Curieux.JY
  • Post
  • Note
  • Jung Yeon Lee

On this page

  • 1 Brief Review
  • 2 Detail Review
    • 2.1 Lie ๊ตฐ๊ณผ Lie ๋Œ€์ˆ˜ ๊ธฐ๋ณธ ๊ฐœ๋… ๋ณต์Šต
    • 2.2 ์ƒํƒœ ์ถ”์ •์—์„œ์˜ Manifold ์ƒํƒœ ํ‘œํ˜„๊ณผ \oplus ์—ฐ์‚ฐ (Retraction)
    • 2.3 Lie ์ด๋ก ์„ ํ™œ์šฉํ•œ ์ƒํƒœ ์ถ”์ •: ์˜ค์ฐจ ํ‘œํ˜„๊ณผ ํ•„ํ„ฐ ๊ตฌ์„ฑ
    • 2.4 Lie ๊ตฐ ์œ„์˜ ๋ฏธ๋ถ„: Jacobian ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•
    • 2.5 ์œ ํด๋ฆฌ๋“œ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ์™€์˜ ๋น„๊ต โ€“ ๋ฌด์—‡์ด ๋‹ค๋ฅด๊ณ  ์–ด๋–ค ์žฅ์ ์ด ์žˆ๋‚˜?
    • 2.6 ๋งบ์œผ๋ฉฐ

๐Ÿ“ƒMicro Lie Theory ๋ฆฌ๋ทฐ

lie
state-estimation
basic
A micro Lie theory for state estimation in robotics
Published

August 5, 2025

  • Paper Link
  1. ๐ŸŽฏ ์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ๊ณตํ•™ ๋ถ„์•ผ์˜ ์ƒํƒœ ์ถ”์ •์—์„œ Lie ๊ตฐ ์ด๋ก ์„ ๋กœ๋ด‡ ๊ณตํ•™์ž๋“ค์ด ๋” ์‰ฝ๊ฒŒ ์ดํ•ดํ•˜๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก โ€™๋งˆ์ดํฌ๋กœ Lie ์ด๋ก โ€™์œผ๋กœ ๋‹จ์ˆœํ™”ํ•˜์—ฌ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
  2. ๐Ÿ› ๏ธ ์ €์ž๋“ค์€ Lie ์ด๋ก ์˜ ํ•„์ˆ˜์ ์ธ ๋ถ€๋ถ„๋งŒ์„ ์„ ๋ณ„ํ•˜๊ณ , Exp, Log, โŠ•, ์™€ ๊ฐ™์€ ์—ฐ์‚ฐ์ž๋ฅผ ๋„์ž…ํ•˜์—ฌ Lie ๋Œ€์ˆ˜ ๋Œ€์‹  ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ ๋ฐ ์•ผ์ฝ”๋น„ ํ–‰๋ ฌ ๊ณ„์‚ฐ์„ ๋‹จ์ˆœํ™”ํ•ฉ๋‹ˆ๋‹ค.
  3. ๐Ÿค– ์ด ์—ฐ๊ตฌ๋Š” ๋กœ๋ด‡ ์œ„์น˜ ์ถ”์ • ๋ฐ ๋งคํ•‘(SLAM)๊ณผ ๊ฐ™์€ ์‘์šฉ ๋ถ„์•ผ์—์„œ Kalman ํ•„ํ„ฐ์™€ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ์ด๋ก ์˜ ์‹ค์šฉ์„ฑ๊ณผ ์šฐ์•„ํ•จ์„ ์‹œ์—ฐํ•˜๋ฉฐ, ๊ด€๋ จ C++ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ(manif)๋„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

1 Brief Review

์ด ๋…ผ๋ฌธ์€ 19์„ธ๊ธฐ ์ˆ˜ํ•™์ž Sophus Lie๊ฐ€ ์—ฐ์† ๋ณ€ํ™˜ group ์ด๋ก ์˜ ๊ธฐ์ดˆ๋ฅผ ๋งˆ๋ จํ•œ ์ด๋ž˜ ๋‹ค์–‘ํ•œ ๊ณผํ•™ ๊ธฐ์ˆ  ๋ถ„์•ผ๋กœ ์˜ํ–ฅ์„ ํ™•์žฅํ•ด ์˜จ ์ˆ˜ํ•™์  ์ถ”์ƒ์ฒด์ธ Lie group์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ํŠนํžˆ ๋กœ๋ด‡ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ๋Š” ์ตœ๊ทผ estimation, ๊ทธ ์ค‘์—์„œ๋„ navigation์„ ์œ„ํ•œ motion estimation ๋ถ„์•ผ์—์„œ ๊ทธ ์‚ฌ์šฉ์ด ๋‘๋“œ๋Ÿฌ์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋‹ค์ˆ˜์˜ ๋กœ๋ด‡ ๊ณตํ•™์ž์—๊ฒŒ Lie group์€ ์—ฌ์ „ํžˆ ๊ณ ๋„๋กœ ์ถ”์ƒ์ ์ธ ๊ฐœ๋…์œผ๋กœ ์ดํ•ดํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ๊ณตํ•™์˜ estimation์—์„œ Lie theory์˜ ๋ชจ๋“  ์—ญ๋Ÿ‰์„ ํ™œ์šฉํ•  ํ•„์š”๋Š” ์—†๋‹ค๋Š” ์ ์— ์ฐฉ์•ˆํ•˜์—ฌ, ์ด๋ก ์˜ ํ•ต์‹ฌ ์›๋ฆฌ๋งŒ์„ ์„ ๋ณ„ํ•˜์—ฌ ๋ช…ํ™•ํ•˜๊ณ  ์œ ์šฉํ•œ ์•„์ด๋””์–ด๋ฅผ ์ „๋‹ฌํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ„์†Œํ™”๋œ micro Lie theory๋Š” SLAM, ์‹œ๊ฐ odometry ๋“ฑ ํ˜„๋Œ€ ๋กœ๋ด‡ ๊ณตํ•™์˜ estimation algorithm์—์„œ ๋งค์šฐ ์œ ์šฉํ•จ์ด ์ž…์ฆ๋˜์—ˆ๋‹ค. ์ด micro Lie theory์™€ ํ•จ๊ป˜, ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ์ฃผ์š” Lie group์— ๋Œ€ํ•œ ๊ณต์‹(๋Œ€๋ถ€๋ถ„์˜ Jacobian matrix์™€ ์ด๋ฅผ ์‰ฝ๊ฒŒ ์กฐ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ• ํฌํ•จ)์„ ์ฐธ๊ณ  ์ž๋ฃŒ๋กœ ์ œ๊ณตํ•œ๋‹ค. ๋˜ํ•œ, ์—ฌ๊ธฐ์— ์„ค๋ช…๋œ ๋ชจ๋“  ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ƒˆ๋กœ์šด C++ template-only library์ธ manif๋„ ์†Œ๊ฐœํ•œ๋‹ค.

I. ์„œ๋ก 

์ตœ๊ทผ ๋กœ๋ด‡ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ๋Š” ์ •๋ฐ€๋„, ์ผ๊ด€์„ฑ ๋ฐ ํ•ด๋ฒ•์˜ ์•ˆ์ •์„ฑ์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ estimation ๋ฌธ์ œ๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ๊ณต์‹ํ™”ํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์ด ํ™œ๋ฐœํ•˜๋‹ค. ์ด๋Š” ์ƒํƒœ ๋ฐ ์ธก์ •๊ฐ’, ์ด๋“ค์„ ์—ฐ๊ฒฐํ•˜๋Š” ํ•จ์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ๋ถˆํ™•์‹ค์„ฑ์„ ์ ์ ˆํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋…ธ๋ ฅ์€ ์ƒํƒœ ํ‘œํ˜„์ด ์ง„ํ™”ํ•˜๋Š” Lie group์˜ ๋ถ€๋“œ๋Ÿฌ์šด topologic surface์ธ manifold๋ฅผ ํฌํ•จํ•˜๋Š” ์„ค๊ณ„๋กœ ์ด์–ด์กŒ๋‹ค. Lie theory(LT)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ, ๋ฏธ๋ถ„ ๋ฐ ์ ๋ถ„์„ ์ •๋ฐ€ํ•˜๊ณ  ์‰ฝ๊ฒŒ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ์—„๊ฒฉํ•œ ๊ณ„์‚ฐ ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ด๋Ÿฌํ•œ ์ž‘์—…์€ SO(3) ๋ฐ SE(3)์™€ ๊ฐ™์€ ์ž˜ ์•Œ๋ ค์ง„ manifold์— ์ค‘์ ์„ ๋‘”๋‹ค.

Lie group์„ ์ฒ˜์Œ ์ ‘ํ•  ๋•Œ, ์œ„์ƒํ•™์ , ๋Œ€์ˆ˜์ , ๊ธฐํ•˜ํ•™์  ๊ด€์ ์—์„œ ์ ‘๊ทผํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์œ„์ƒํ•™์  ๊ด€์ ์€ manifold์˜ ํ˜•ํƒœ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ tangent space ๋ฐ exponential map๊ณผ์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ง๊ด€์„ ์ œ๊ณตํ•œ๋‹ค. ๋Œ€์ˆ˜์  ๊ด€์ ์€ group operation๊ณผ ๊ตฌ์ฒด์ ์ธ ๊ตฌํ˜„์„ ํฌํ•จํ•˜์—ฌ ๋Œ€์ˆ˜์  ์†์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ํ์‡„ํ˜• ๊ณต์‹์„ ๊ฐœ๋ฐœํ•˜๊ฑฐ๋‚˜ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ๋กœ๋ด‡ ๊ณตํ•™์— ํŠนํžˆ ์œ ์šฉํ•œ ๊ธฐํ•˜ํ•™์  ๊ด€์ ์€ group element๋ฅผ ๋กœ๋ด‡์˜ ์œ„์น˜, ์†๋„, ๋ฐฉํ–ฅ ๋“ฑ๊ณผ ์—ฐ๊ฒฐํ•œ๋‹ค.

Lie theory๋Š” ๊ฒฐ์ฝ” ๊ฐ„๋‹จํ•˜์ง€ ์•Š๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ โ€œ๊ธฐ๋ณธโ€, โ€œ๋งค์šฐ ๊ธฐ๋ณธโ€, โ€œ์ˆœ์ง„ํ•œโ€ Lie theory ๊ด€๋ จ ์„œ์ ๋“ค๋ณด๋‹ค ๋”์šฑ ๊ฐ„์†Œํ™”๋œ micro Lie theory๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” Lie theory์—์„œ ๋กœ๋ด‡ ๊ณตํ•™์˜ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ์— ํ•„์š”ํ•œ ์ž‘์€ ๋ถ€๋ถ„ ์ง‘ํ•ฉ๋งŒ์„ ์„ ๋ณ„ํ•˜๊ณ , didacticํ•˜๊ฒŒ ๋งŽ์€ ์ค‘๋ณต์„ ํ†ตํ•ด ์„ค๋ช…ํ•จ์œผ๋กœ์จ Lie theory ์ง„์ž… ์žฅ๋ฒฝ์„ ๋‚ฎ์ถ”๋ ค๋Š” ๋ชฉ์ ์„ ๊ฐ€์ง„๋‹ค. ํŠนํžˆ, ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์  estimator์— ํ•„์ˆ˜์ ์ด์ง€๋งŒ ๊ตฌํ˜„์— ์–ด๋ ค์›€์„ ๊ฒช๋Š” Jacobian ๊ณ„์‚ฐ์— ์ค‘์ ์„ ๋‘”๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ƒˆ๋กœ์šด open-source C++ header-only library์ธ manif(https://github.com/artivis/manif)์™€ ํ•จ๊ป˜ ์ œ๊ณต๋œ๋‹ค. manif๋Š” ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” SO(2), SO(3), SE(2), SE(3) group์„ ๊ตฌํ˜„ํ•˜๋ฉฐ analytic Jacobian ์ƒ์„ฑ์„ ์ง€์›ํ•œ๋‹ค.

II. A MICRO LIE THEORY

A. Lie Group

Lie group์€ group๊ณผ smooth manifold์˜ ๊ฐœ๋…์„ ํ†ตํ•ฉํ•œ ๊ฒƒ์œผ๋กœ, group axiom์„ ๋งŒ์กฑํ•˜๋Š” smooth manifold์ด๋‹ค. smooth manifold๋Š” ๊ตญ์†Œ์ ์œผ๋กœ linear space์™€ ์œ ์‚ฌํ•œ topological space๋กœ, ๊ณก๋ฉด์ด์ง€๋งŒ ๊ฐ€์žฅ์ž๋ฆฌ๋‚˜ ๋พฐ์กฑํ•œ ๋ถ€๋ถ„์ด ์—†๋Š” ๋ถ€๋“œ๋Ÿฌ์šด (hyper)-surface๋กœ ์‹œ๊ฐํ™”๋  ์ˆ˜ ์žˆ๋‹ค. manifold์˜ ๋ถ€๋“œ๋Ÿฌ์›€์€ ๊ฐ ์ง€์ ์— ๊ณ ์œ ํ•œ tangent space๊ฐ€ ์กด์žฌํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. group axiom์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  • Closure under โ—ฆ: X \circ Y \in G (1)
  • Identity E: E \circ X = X \circ E = X (2)
  • Inverse X^{-1}: X^{-1} \circ X = X \circ X^{-1} = E (3)
  • Associativity: (X \circ Y) \circ Z = X \circ (Y \circ Z) (4)
  • Lie group์—์„œ๋Š” ๋ชจ๋“  tangent space๊ฐ€ ๋™์ผํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋ฉฐ, group structure๋Š” manifold ์š”์†Œ๋“ค์˜ ํ•ฉ์„ฑ ๊ฒฐ๊ณผ๊ฐ€ manifold ๋‚ด์— ์œ ์ง€๋˜๊ณ , ๊ฐ ์š”์†Œ๊ฐ€ manifold ๋‚ด์— inverse๋ฅผ ๊ฐ€์ง€๋„๋ก ํ•œ๋‹ค. identity์—์„œ์˜ tangent space๋ฅผ Lie algebra๋ผ๊ณ  ํ•œ๋‹ค.

B. Group Action

Lie group์€ ๋‹ค๋ฅธ set์˜ ์š”์†Œ๋“ค์„ ๋ณ€ํ™˜ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋Š” ๋กœ๋ด‡ ๊ณตํ•™์—์„œ rotation, translation, scaling ๋“ฑ์— ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋œ๋‹ค. Lie group M๊ณผ set V๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, X \in M์˜ v \in V์— ๋Œ€ํ•œ action์€ X \cdot v๋กœ ํ‘œ๊ธฐํ•˜๋ฉฐ ๋‹ค์Œ axiom์„ ๋งŒ์กฑํ•ด์•ผ ํ•œ๋‹ค: - Identity: E \cdot v = v (6) - Compatibility: (X \circ Y) \cdot v = X \cdot (Y \cdot v) (7) ์ผ๋ฐ˜์ ์ธ ์˜ˆ๋กœ๋Š” rotation matrices SO(n), unit quaternions group, rigid motion group SE(n) ๋“ฑ์ด ์žˆ๋‹ค.

C. Tangent Space์™€ Lie Algebra

Lie group์˜ manifold M ์œ„๋ฅผ ์›€์ง์ด๋Š” ์  X(t)์˜ ์†๋„ \dot{X} = \partial X / \partial t๋Š” X์—์„œ์˜ tangent space T_X M์— ์†ํ•œ๋‹ค. manifold์˜ ๋ถ€๋“œ๋Ÿฌ์›€์€ ๊ฐ ์ง€์ ์— ๊ณ ์œ ํ•œ tangent space๊ฐ€ ์กด์žฌํ•จ์„ ์˜๋ฏธํ•œ๋‹ค.

  1. Lie algebra \mathfrak{m}: identity E์—์„œ์˜ tangent space T_E M๋ฅผ Lie algebra \mathfrak{m}์ด๋ผ ํ•œ๋‹ค: \mathfrak{m} \triangleq T_E M (8). ๋ชจ๋“  Lie group์—๋Š” ๊ด€๋ จ๋œ Lie algebra๊ฐ€ ์žˆ๋‹ค. Lie algebra \mathfrak{m}์€ vector space์ด๋‹ค. ๊ทธ ์š”์†Œ๋“ค์€ M์˜ ์ž์œ ๋„ m์— ํ•ด๋‹นํ•˜๋Š” m์ฐจ์› vector๋กœ ์‹๋ณ„๋  ์ˆ˜ ์žˆ๋‹ค. exponential map \text{exp}: \mathfrak{m} \to M์€ Lie algebra์˜ ์š”์†Œ๋ฅผ group์˜ ์š”์†Œ๋กœ ์ •ํ™•ํžˆ ๋ณ€ํ™˜ํ•œ๋‹ค. log map์€ ์—ญ ์—ฐ์‚ฐ์ด๋‹ค. multiplicative group์˜ ๊ฒฝ์šฐ, Lie algebra์˜ ์š”์†Œ๋“ค์€ v^\wedge = X^{-1} \dot{X} = -\dot{X}^{-1} X (9)์™€ ๊ฐ™์€ ํ˜•ํƒœ๋กœ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.
  2. Cartesian vector space \mathbb{R}^m: Lie algebra ์š”์†Œ \tau^\wedge๋Š” skew-symmetric matrices, imaginary numbers, pure quaternions์™€ ๊ฐ™์€ ๋น„์ž๋ช…ํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€์ง€๋งŒ, ์ด๋Š” m๊ฐœ์˜ generator E_i์˜ linear combination์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. Hat ๋ฐ Vee(\vee)๋ผ๋Š” ๋‘ ๊ฐœ์˜ ์ƒํ˜ธ ์—ญ linear map ๋˜๋Š” isomorphism์„ ํ†ตํ•ด \mathfrak{m}์—์„œ \mathbb{R}^m์œผ๋กœ, ๊ทธ ๋ฐ˜๋Œ€๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋‹ค: Hat: \mathbb{R}^m \to \mathfrak{m}; \tau \mapsto \tau^\wedge = \sum_{i=1}^m \tau_i E_i (10) Vee: \mathfrak{m} \to \mathbb{R}^m; \tau^\wedge \mapsto (\tau^\wedge)^\vee = \tau = \sum_{i=1}^m \tau_i e_i (11) ๋”ฐ๋ผ์„œ \mathfrak{m}์€ \mathbb{R}^m๊ณผ isomorphicํ•˜๋‹ค (\mathfrak{m} \cong \mathbb{R}^m). ์ด ๋…ผ๋ฌธ์—์„œ๋Š” \mathfrak{m}๋ณด๋‹ค \mathbb{R}^m์„ ์„ ํ˜ธํ•˜๋ฉฐ, ๋ชจ๋“  ์—ฐ์‚ฐ์ž (adjoint, Jacobian, perturbation, covariance matrix)๋Š” \mathbb{R}^m์— ๋Œ€ํ•ด ์ •์˜๋œ๋‹ค.

D. Exponential Map

exponential map \text{exp}(\cdot)์€ Lie algebra์˜ ์š”์†Œ๋ฅผ group์œผ๋กœ ์ •ํ™•ํžˆ ๋ณ€ํ™˜ํ•˜๋Š” retraction ์—ฐ์‚ฐ์ด๋‹ค. ์ง๊ด€์ ์œผ๋กœ exp()๋Š” tangent element๋ฅผ geodesic์„ ๋”ฐ๋ผ manifold ์ฃผ์œ„๋กœ ๊ฐ์‹ผ๋‹ค. ์—ญ map์€ log()์ด๋‹ค. \dot{X} = X v^\wedge (12) ์ด ODE์˜ ํ•ด๋Š” X(t) = X(0) \text{exp}(v^\wedge t) (13)์ด๋‹ค.

exponential map๊ณผ ๊ทธ ์—ญ logarithmic map์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์“ธ ์ˆ˜ ์žˆ๋‹ค: \text{exp}: \mathfrak{m} \to M; \tau^\wedge \mapsto X = \text{exp}(\tau^\wedge) (14) \text{log}: M \to \mathfrak{m}; X \mapsto \tau^\wedge = \text{log}(X) (15)

ํ์‡„ํ˜• exponential map์€ absolutely convergent Taylor series๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. Capitalized Exp์™€ Log maps: Exp์™€ Log map์€ vector element \tau \in \mathbb{R}^m๋ฅผ M์˜ ์š”์†Œ X์— ์ง์ ‘ ๋งคํ•‘ํ•˜๋Š” ํŽธ๋ฆฌํ•œ ๋‹จ์ถ•ํ‚ค์ด๋‹ค. X = \text{Exp}(\tau) \triangleq \text{exp}(\tau^\wedge) (23) \tau = \text{Log}(X) \triangleq (\text{log}(X))^\vee (24)

E. Plus ๋ฐ Minus ์—ฐ์‚ฐ์ž

Plus(\oplus) ๋ฐ Minus(\boxminus) ์—ฐ์‚ฐ์ž๋Š” curved manifold์˜ ์š”์†Œ๋“ค ์‚ฌ์ด์— ์ฆ๋ถ„์„ ๋„์ž…ํ•˜๊ณ  ์ด๋ฅผ flat tangent vector space์—์„œ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด๋“ค์€ Exp/Log ์—ฐ์‚ฐ๊ณผ composition์„ ๊ฒฐํ•ฉํ•œ๋‹ค. composition์˜ ๋น„๊ฐ€ํ™˜์„ฑ ๋•Œ๋ฌธ์—, ํ”ผ์—ฐ์‚ฐ์ž์˜ ์ˆœ์„œ์— ๋”ฐ๋ผ right- ๋ฐ left- ๋ฒ„์ „์œผ๋กœ ์ •์˜๋œ๋‹ค.

  • right-โŠ•: Y = X \oplus X_\tau \triangleq X \circ \text{Exp}(X_\tau) \in M (25)
  • right-boxminus: X_\tau = Y \boxminus X \triangleq \text{Log}(X^{-1} \circ Y) \in T_X M (26)
  • left-โŠ•: $Y = E_\tau \oplus X \triangleq \text{Exp}(E_\tau) \circ X \in M (27)
  • left-boxminus: E_\tau = Y \boxminus X \triangleq \text{Log}(Y \circ X^{-1}) \in T_E M (28)

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ perturbation์„ ๊ตญ์†Œ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด right ํ˜•ํƒœ์˜ โŠ• ๋ฐ \boxminus๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

F. Adjoint ๋ฐ Adjoint Matrix

Eฯ„ โŠ• X = X โŠ• Xฯ„๋ฅผ ํ†ตํ•ด ๊ตญ์†Œ(local) tangent element์™€ ์ „์—ญ(global) tangent element ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค. - Adjoint: M์˜ X์— ๋Œ€ํ•œ Adjoint๋Š” \text{Ad}_X: \mathfrak{m} \to \mathfrak{m}; \tau^\wedge \mapsto \text{Ad}_X (\tau^\wedge) \triangleq X \tau^\wedge X^{-1} (29)๋กœ ์ •์˜๋˜์–ด E_\tau^\wedge = \text{Ad}_X (X_\tau^\wedge)๋ฅผ ๋งŒ์กฑํ•œ๋‹ค. - Adjoint matrix: \text{Ad}_X๋Š” linear์ด๋ฏ€๋กœ, Cartesian tangent vector E_\tau \cong E_\tau^\wedge์™€ X_\tau \cong X_\tau^\wedge๋ฅผ ๋งคํ•‘ํ•˜๋Š” ๋™๋“ฑํ•œ matrix operator \text{Ad}_X๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค: \text{Ad}_X: \mathbb{R}^m \to \mathbb{R}^m; X_\tau \mapsto E_\tau = \text{Ad}_X X_\tau (30) ์ด๋Š” (\text{Ad}_X \tau = (X \tau^\wedge X^{-1})^\vee) (31)๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. Adjoint matrix๋Š” X์—์„œ์˜ tangent space์˜ vector๋ฅผ origin์—์„œ์˜ tangent space์˜ vector๋กœ linearํ•˜๊ฒŒ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐ ์ž์ฃผ ์‚ฌ์šฉ๋œ๋‹ค.

G. Lie Group์—์„œ์˜ ๋ฏธ๋ถ„

Lie group์—์„œ์˜ ๋ฏธ๋ถ„์€ ์ฃผ๋กœ vector tangent space๋ฅผ ๋งคํ•‘ํ•˜๋Š” Jacobian matrix ํ˜•ํƒœ๋กœ ์ •์˜๋œ๋‹ค. ์ด๋Š” ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์ฆ๋ถ„์„ ์ ์ ˆํ•˜๊ณ  ์‰ฝ๊ฒŒ ์ •์˜ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ Jacobian์„ ์‚ฌ์šฉํ•˜๋ฉด Lie group์˜ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ ๊ณต์‹์ด vector space์˜ ๊ณต์‹๊ณผ ํฌ๊ฒŒ ์œ ์‚ฌํ•ด์ง„๋‹ค.

  1. Vector space์—์„œ์˜ Jacobian: ํ•จ์ˆ˜ f: \mathbb{R}^m \to \mathbb{R}^n์— ๋Œ€ํ•ด Jacobian matrix๋Š” ๋ชจ๋“  ํŽธ๋ฏธ๋ถ„์„ ์Œ“์€ n \times m matrix์ด๋‹ค: J = \frac{\partial f(x)}{\partial x} \triangleq \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{n \times m} (35) Jacobian์€ J = \frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \in \mathbb{R}^{n \times m} (38)๊ณผ ๊ฐ™์ด ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.
  2. Lie group์—์„œ์˜ Right Jacobian: manifold์—์„œ ์ž‘๋™ํ•˜๋Š” ํ•จ์ˆ˜ f: M \to N์˜ Jacobian์„ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด โŠ• ๋ฐ \boxminus ์—ฐ์‚ฐ์ž๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค: ^X D_X f(X) \triangleq \lim_{\tau \to 0} \frac{f(X \oplus \tau) \boxminus f(X)}{\tau} \in \mathbb{R}^{n \times m} (41a) ์ด๋ฅผ right Jacobian์ด๋ผ ๋ถ€๋ฅธ๋‹ค. ์ด๋Š” X์™€ f(X)์—์„œ์˜ ๊ตญ์†Œ tangent space์˜ vector๋กœ ํ‘œํ˜„๋œ ๋ฌดํ•œ์†Œ ๋ณ€ํ™”๋Ÿ‰์˜ ๋ฏธ๋ถ„์ด๋‹ค.
  3. Lie group์—์„œ์˜ Left Jacobian: left plus ๋ฐ minus operator์—์„œ ๋ฏธ๋ถ„์„ ์ •์˜ํ•  ์ˆ˜๋„ ์žˆ๋‹ค: ^E D_X f(X) \triangleq \lim_{\tau \to 0} \frac{f(\tau \oplus X) \boxminus f(X)}{\tau} \in \mathbb{R}^{n \times m} (44) ์ด๋ฅผ left Jacobian์ด๋ผ ๋ถ€๋ฅธ๋‹ค. ์ด๋Š” global tangent space(Lie algebra)๋ฅผ ๋งคํ•‘ํ•˜๋Š” matrix์ด๋‹ค. left Jacobian๊ณผ right Jacobian์€ adjoint์— ์˜ํ•ด ๊ด€๋ จ๋œ๋‹ค: ^E D_X f(X) \text{Ad}_X = \text{Ad}_{f(X)} ^X D_X f(X) (46)

H. Manifold์—์„œ์˜ ๋ถˆํ™•์‹ค์„ฑ, Covariance Propagation

์  \bar{X} \in M ์ฃผ๋ณ€์˜ ๊ตญ์†Œ perturbation \tau๋Š” tangent vector space T_{\bar{X}} M์—์„œ right-โŠ• ๋ฐ \boxminus๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ •์˜๋œ๋‹ค: X = \bar{X} \oplus \tau, \tau = X \boxminus \bar{X} \in T_{\bar{X}} M (51) Covariance matrix๋Š” ์ด tangent space์—์„œ expectation operator E[ยท]๋ฅผ ํ†ตํ•ด ์ ์ ˆํ•˜๊ฒŒ ์ •์˜๋  ์ˆ˜ ์žˆ๋‹ค: \Sigma_X \triangleq E[\tau \tau^>] = E[(X \boxminus \bar{X})(X \boxminus \bar{X})^>] \in \mathbb{R}^{m \times m} (52) ์ด๋ฅผ ํ†ตํ•ด manifold์— Gaussian variable X \sim N(\bar{X}, \Sigma_X)๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. global ๋ฐ local perturbation์€ adjoint (30)์— ์˜ํ•ด ๊ด€๋ จ๋˜๋ฏ€๋กœ, covariance๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณ€ํ™˜๋  ์ˆ˜ ์žˆ๋‹ค: ^E \Sigma_X = \text{Ad}_X {}^X \Sigma_X \text{Ad}_X^> (54) ํ•จ์ˆ˜ f: M \to N; X \mapsto Y = f(X)๋ฅผ ํ†ตํ•œ covariance propagation์€ Jacobian matrix (41a)๋ฅผ ์‚ฌ์šฉํ•œ linearization (43)์„ ํ†ตํ•ด ์ต์ˆ™ํ•œ ๊ณต์‹์„ ์ œ๊ณตํ•œ๋‹ค: \Sigma_Y \approx {}^X D_X f \Sigma_X {}^X D_X f^> \in \mathbb{R}^{n \times n} (55)

I. Manifold์—์„œ์˜ ์ด์‚ฐ ์ ๋ถ„

exponential map X(t) = X_0 \circ \text{Exp}(vt)๋Š” manifold ์œ„์—์„œ ์ผ์ • ์†๋„ v \in T_{X_0} M์˜ ์—ฐ์† ์‹œ๊ฐ„ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋น„์ผ์ • ์†๋„ v(t)๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ piecewise constant bit v_k \in T_{X_{k-1}} M์™€ ์งง์€ ์ง€์† ์‹œ๊ฐ„ \delta t_k๋กœ ๋ถ„ํ• ํ•˜์—ฌ ์ด์‚ฐ ์ ๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค: X_k = X_{k-1} \oplus \tau_k = X_{k-1} \circ \text{Exp}(\tau_k) = X_{k-1} \circ \text{Exp}(v_k \delta t_k) (56)

III. MANIFOLD์—์„œ์˜ ๋ฏธ๋ถ„ ๊ทœ์น™

์ผ๋ฐ˜์ ์ธ manifold์— ๋Œ€ํ•ด, inversion, composition, exponentiation ๋ฐ action์— ๋Œ€ํ•œ ๊ธฐ๋ณธ Jacobian์˜ ํ์‡„ํ˜•์„ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ด๋“ค ์ค‘ ์ผ๋ถ€๋Š” adjoint \text{Ad}_X์™€ ๊ด€๋ จ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ฏธ๋ถ„ ๊ณผ์ •์˜ ํ•ต์‹ฌ block์ด ๋œ๋‹ค. ๋‹ค๋ฅธ Log, โŠ•, \boxminus์— ๋Œ€ํ•œ ํ˜•ํƒœ๋Š” ์ด๋“ค๋กœ๋ถ€ํ„ฐ ์‰ฝ๊ฒŒ ํŒŒ์ƒ๋  ์ˆ˜ ์žˆ๋‹ค.

A. Chain Rule

Y = f(X)์ด๊ณ  Z = g(Y)์ผ ๋•Œ, Z = g(f(X))์ด๋‹ค. chain rule์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค: D_X Z = D_Y Z D_X Y ๋˜๋Š” J_X^Z = J_Y^Z J_X^Y (58)

B. ๊ธฐ๋ณธ Jacobian Block

  1. Inverse: J_X^{X^{-1}} = - \text{Ad}_X (62)
  2. Composition: J_X^{X \circ Y} = \text{Ad}_{Y^{-1}} (65), J_Y^{X \circ Y} = I (66)
  3. Jacobians of M: Exp map์˜ right Jacobian์€ J_r(\tau) \triangleq {}^\tau D_\tau \text{Exp}(\tau) \in \mathbb{R}^{m \times m} (67)๋กœ ์ •์˜๋œ๋‹ค. left Jacobian์€ J_l(\tau) \triangleq {}^E D_\tau \text{Exp}(\tau) \in \mathbb{R}^{m \times m} (71)๋กœ ์ •์˜๋œ๋‹ค. right Jacobian๊ณผ left Jacobian์€ adjoint์— ์˜ํ•ด ๊ด€๋ จ๋œ๋‹ค: \text{Ad}_{\text{Exp}(\tau)} = J_l(\tau) J_r^{-1}(\tau) (75)
  4. Group action: X \in M ๋ฐ v \in V์— ๋Œ€ํ•œ Jacobian์€ J_X^{X \cdot v} = {}^X D_X X \cdot v (77) ๋ฐ J_v^{X \cdot v} = {}^v D_v X \cdot v (78)๋กœ ์ •์˜๋œ๋‹ค.

C. ์œ ๋„๋œ Jacobian Block

  1. Log map: J_X^{\text{Log}(X)} = J_r^{-1}(\tau) (79)
  2. Plus ๋ฐ Minus: J_X^{X \oplus \tau} = \text{Ad}_{\text{Exp}(\tau)^{-1}} (80) J_\tau^{X \oplus \tau} = J_r(\tau) (81) J_X^{Y \boxminus X} = -J_l^{-1}(\tau) (82) J_Y^{Y \boxminus X} = J_r^{-1}(\tau) (83)

IV. Composite Manifold

Composite manifold M = \langle M_1, \cdots, M_M \rangle๋Š” M๊ฐœ์˜ ์ƒํ˜ธ์ž‘์šฉํ•˜์ง€ ์•Š๋Š” manifold์˜ ์—ฐ๊ฒฐ์ด๋‹ค. ์ด๋Š” ๊ฐ block์— ๋Œ€ํ•ด identity, inverse, composition์„ ๋ณ„๋„๋กœ ์ •์˜ํ•จ์œผ๋กœ์จ ์ด๋ฃจ์–ด์ง„๋‹ค. Exp์™€ Log map ๋˜ํ•œ ๊ฐ block์— ๋Œ€ํ•ด ๋…๋ฆฝ์ ์œผ๋กœ ์ •์˜๋œ๋‹ค: \text{Exp}\langle\tau\rangle \triangleq \begin{pmatrix} \text{Exp}(\tau_1) \\ \vdots \\ \text{Exp}(\tau_M) \end{pmatrix}, \text{Log}\langle X \rangle \triangleq \begin{pmatrix} \text{Log}(X_1) \\ \vdots \\ \text{Log}(X_M) \end{pmatrix} (85) ์ด๋Š” composite์˜ right-plus ๋ฐ minus ์—ฐ์‚ฐ์ž๋ฅผ ์ƒ์„ฑํ•œ๋‹ค: X \boxplus \tau \triangleq X \diamond \text{Exp}\langle\tau\rangle (86) Y \boxminus X \triangleq \text{Log}\langle X^{-1} \diamond Y \rangle (87) ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๋ฏธ๋ถ„์„ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค: \frac{D f(X)}{D X} \triangleq \lim_{\tau \to 0} \frac{f(X \boxplus \tau) \boxminus f(X)}{\tau} (88) composite manifold์—์„œ ์ž‘๋™ํ•˜๋Š” ํ•จ์ˆ˜ f: M \to N์˜ Jacobian์€ block-wise๋กœ ๊ฒฐ์ •๋  ์ˆ˜ ์žˆ๋‹ค.

V. LANDMARK-BASED LOCALIZATION ๋ฐ MAPPING

์ด๋ก ์˜ ์ ์šฉ ์˜ˆ์‹œ๋กœ ๋กœ๋ด‡ localization ๋ฐ mapping์„ ์ œ๊ณตํ•œ๋‹ค. ๋กœ๋ด‡ ์ž์„ธ๋Š” SE(2)(App. C)์—, beacon ์œ„์น˜๋Š” R2(App. E)์— ์กด์žฌํ•œ๋‹ค. control signal u๋Š” longitudinal velocity v์™€ angular velocity ฯ‰๋ฅผ ํฌํ•จํ•˜๋Š” se(2)์˜ twist์ด๋‹ค. landmark ์ธก์ •๊ฐ’์€ range ๋ฐ bearing type์ด์ง€๋งŒ ๋‹จ์ˆœํ™”๋ฅผ ์œ„ํ•ด Cartesian form์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค. A. Manifold์—์„œ์˜ Error-State Kalman Filter๋ฅผ ์ด์šฉํ•œ Localization beacon์˜ ์œ„์น˜๊ฐ€ ์•Œ๋ ค์ ธ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ์ถ”์ •ํ•  ์ž์„ธ๋Š” \hat{X} \in \text{SE(2)}๋กœ ์ •์˜ํ•œ๋‹ค. ์ถ”์ • ์˜ค์ฐจ \delta x์™€ ๊ทธ covariance P๋Š” tangent space์—์„œ (51), (52)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„๋œ๋‹ค. \delta x \triangleq X \boxminus \hat{X} \in \mathbb{R}^3 (97) P \triangleq E[(X \boxminus \hat{X})(X \boxminus \hat{X})^>] \in \mathbb{R}^{3 \times 3} (98) ๋กœ๋ด‡์˜ ์›€์ง์ž„๋งˆ๋‹ค ESKF prediction์„ ์ ์šฉํ•œ๋‹ค: \hat{X}_j = \hat{X}_i \oplus u_j (99) P_j = F P_i F^> + G W_j G^> (100) beacon ์ธก์ •๊ฐ’ y_k๋งˆ๋‹ค ESKF correction์„ ์ ์šฉํ•œ๋‹ค: State update: \hat{X} \leftarrow \hat{X} \oplus \delta x (101) Covariance update: P \leftarrow P - K Z K^> (102) ์ •๊ทœ EKF์™€์˜ ์œ ์ผํ•œ ์ฐจ์ด์ ์€ (99)์™€ (101)์—์„œ ์ •๊ทœ +๊ฐ€ โŠ•๋กœ ๋Œ€์ฒด๋œ๋‹ค๋Š” ์ ์ด๋‹ค. Jacobian์€ ๋ชจ๋‘ Lie theory๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ๋œ๋‹ค.

B. Graph-based Optimization์„ ์ด์šฉํ•œ Smoothing ๋ฐ Mapping

SAM(smoothing and mapping) ๋ฌธ์ œ๋Š” beacon์˜ ์œ„์น˜์™€ ๋กœ๋ด‡์˜ ๊ถค์ ์„ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ, graph-based iterative least-squares optimizer๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๋ฌธ์ œ ์ƒํƒœ๋Š” composite X = \langle X_1, X_2, X_3, b_4, b_5, b_6 \rangle๋กœ ํ‘œํ˜„๋œ๋‹ค. ๊ฐ prior ๋˜๋Š” ์ธก์ •์€ ๊ทธ๋ž˜ํ”„์— factor๋ฅผ ๊ธฐ์—ฌํ•œ๋‹ค. ์ตœ์ ํ™” ๋‹จ๊ณ„ \delta x^*๋Š” \delta x^* = \arg \min_{\delta x} \sum_{p \in \mathcal{P}} r_p(X \boxplus \delta x)^> r_p(X \boxplus \delta x) (106)๋ฅผ ์ตœ์†Œํ™”ํ•˜์—ฌ ์–ป์–ด์ง„๋‹ค. ๊ฐ residual์€ Jacobian์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ ํ˜•ํ™”๋œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” least-squares๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ \delta x^* = -(J^> J)^{-1} J^> r (109)๋กœ ํ•ด๊ฒฐ๋˜๋ฉฐ, ์ด optimal step \delta x^*๋Š” ์ƒํƒœ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค: X \leftarrow X \boxplus \delta x^* (110). ์ด ๊ณผ์ •์€ ์ˆ˜๋ ดํ•  ๋•Œ๊นŒ์ง€ ๋ฐ˜๋ณต๋œ๋‹ค. composite notation์˜ ์‚ฌ์šฉ์€ Jacobian์˜ block-wise ์ •์˜์™€ ์—…๋ฐ์ดํŠธ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค.

C. Self-calibration์„ ํฌํ•จํ•œ Smoothing ๋ฐ Mapping

์›€์ง์ž„ ์„ผ์„œ๊ฐ€ ์•Œ ์ˆ˜ ์—†๋Š” calibration bias c = (c_v, c_\omega)^>์— ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด, control์€ ์ด์ œ \tilde{u} = (v \delta t + c_v, 0, \omega \delta t + c_\omega)^> + w๊ฐ€ ๋œ๋‹ค. ์ƒํƒœ composite๋Š” ์•Œ ์ˆ˜ ์—†๋Š” c๋กœ ํ™•์žฅ๋œ๋‹ค. ์ตœ์  ์†”๋ฃจ์…˜์€ ์„ผ์„œ bias์˜ ์ตœ์  ์ถ”์ •์น˜๋ฅผ ํฌํ•จํ•œ๋‹ค.

D. 3D ๊ตฌํ˜„

์œ„์˜ ๋ชจ๋“  ์˜ˆ์‹œ๋Š” 3D๋กœ ์‰ฝ๊ฒŒ ํ™•์žฅ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ชจ๋“  ๋ณ€์ˆ˜๋ฅผ ์˜ฌ๋ฐ”๋ฅธ space(X \in \text{SE(3)}, u \in \mathbb{R}^6 \cong \text{se(3)}, ๊ทธ๋ฆฌ๊ณ  \{b_k, y\} \in \mathbb{R}^3)์— ์ •์˜ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถฉ๋ถ„ํ•˜๋‹ค. Jacobian๊ณผ covariance matrix๋„ ์ ์ ˆํ•œ ํฌ๊ธฐ๋กœ ์กฐ์ •๋œ๋‹ค. Lie theory๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ถ”์ƒํ™” ์ˆ˜์ค€ ๋•๋ถ„์— 2D์™€ 3D์— ๋Œ€ํ•ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ชจ๋“  ์ˆ˜ํ•™์  ๋‚ด์šฉ์€ ์ •ํ™•ํžˆ ๋™์ผํ•˜๋‹ค๋Š” ์ ์ด ์ค‘์š”ํ•˜๋‹ค.

VI. ๊ฒฐ๋ก 

์ด ๋…ผ๋ฌธ์€ ์ƒํƒœ ์ถ”์ •์— ๋Šฅ์ˆ™ํ•œ ๋…์ž์ธต, ํŠนํžˆ ๋กœ๋ด‡ ๊ณตํ•™ ์‘์šฉ ๋ถ„์•ผ์— ์œ ์šฉํ•œ ํ˜•ํƒœ๋กœ Lie theory์˜ ํ•„์ˆ˜์ ์ธ ๋ถ€๋ถ„์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ, ๊ฐ€๋Šฅํ•œ ํ•œ ์ถ”์ƒ์ ์ธ ์ˆ˜ํ•™์  ๊ฐœ๋…์„ ํ”ผํ•˜๋Š” ์ž๋ฃŒ ์„ ๋ณ„์„ ํ†ตํ•ด Lie theory์˜ ๋„๊ตฌ๋ฅผ ์ดํ•ดํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ฒŒ ๋งŒ๋“ค์—ˆ๋‹ค. ๋‘˜์งธ, ์ƒ๋‹นํ•œ ์ค‘๋ณต์„ ํฌํ•จํ•œ didactical approach๋ฅผ ์„ ํƒํ–ˆ๋‹ค. ๋ณธ๋ฌธ์€ Lie theory์˜ ์ถ”์ƒ์ ์ธ ์ ๋“ค์„ ๋‹ค๋ฃจ๋ฉฐ, ๊ตฌ์ฒด์ ์ธ Lie group์— ์ถ”์ƒ์ ์ธ ๊ฐœ๋…์„ ์ ์šฉํ•˜๋Š” ์˜ˆ์‹œ์™€ ์ƒ์„ธํ•œ ์„ค๋ช…์„ ํฌํ•จํ•˜๋Š” ๊ทธ๋ฆผ๋“ค์ด ํ•จ๊ป˜ ์ œ๊ณต๋œ๋‹ค. ์…‹์งธ, capitalized Exp() ๋ฐ Log() map๊ณผ plus, minus operator(โŠ•, \boxminus, \boxplus, \boxminus)์™€ ๊ฐ™์€ ํŽธ๋ฆฌํ•œ ์—ฐ์‚ฐ์ž ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด tangent space์˜ Cartesian representation์—์„œ ์ž‘์—…ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ‘œ์ค€ vector space์˜ ๊ณต์‹๊ณผ ํฌ๊ฒŒ ์œ ์‚ฌํ•œ ๋ฏธ๋ถ„ ๋ฐ covariance ์ฒ˜๋ฆฌ ๊ณต์‹์„ ์ƒ์„ฑํ•œ๋‹ค. ๋„ท์งธ, Jacobian์˜ ์ •์˜, ๊ธฐํ•˜ํ•™์  ํ•ด์„ ๋ฐ ๊ณ„์‚ฐ์— ํŠน๋ณ„ํžˆ ๊ฐ•์กฐํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Jacobian matrix์™€ covariance์— ๋Œ€ํ•œ ํ‘œ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ์‹œ๊ฐ์ ์œผ๋กœ ๊ฐ•๋ ฅํ•œ ์กฐ์ž‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํŠนํžˆ chain rule์€ ์ด ํ‘œ๊ธฐ๋ฒ•์œผ๋กœ ๋ช…ํ™•ํ•˜๊ฒŒ ๋ณด์ธ๋‹ค. ๋‹ค์„ฏ์งธ, ๋ถ€๋ก์—์„œ ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” group์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ๊ณต์‹ ๋ชจ์Œ์„ ์ œ์‹œํ•œ๋‹ค. ์—ฌ์„ฏ์งธ, Lie theory๊ฐ€ ๋กœ๋ด‡ ๊ณตํ•™ ๋ฌธ์ œ๋ฅผ ์šฐ์•„ํ•˜๊ณ  ์ •๋ฐ€ํ•˜๊ฒŒ ํ•ด๊ฒฐํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ๋ช‡ ๊ฐ€์ง€ ์‘์šฉ ์˜ˆ์‹œ๋ฅผ ์ œ์‹œํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ด ๋…ผ๋ฌธ์€ ์—ฌ๊ธฐ์— ์„ค๋ช…๋œ ๋„๊ตฌ๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์ƒˆ๋กœ์šด C++ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ manif๋ฅผ ํ•จ๊ป˜ ์ œ๊ณตํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ƒˆ๋กœ์šด ์ด๋ก ์  ๋‚ด์šฉ์„ ๋„์ž…ํ•˜์ง€๋Š” ์•Š์ง€๋งŒ, Lie theory๊ฐ€ ์ œ์‹œ๋œ ๋ฐฉ์‹์ด ๋งŽ์€ ์—ฐ๊ตฌ์ž๊ฐ€ ํ–ฅํ›„ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ์ด ๋ถ„์•ผ์— ์ง„์ž…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋ฏฟ๋Š”๋‹ค.


2 Detail Review

๋กœ๋ด‡ ์ƒํƒœ ์ถ”์ •๊ณผ Lie ์ด๋ก : ์ด๋ก ๊ณผ ์‘์šฉ์˜ ์ง๊ด€์  ํ•ด์„ค

๋กœ๋ด‡ ๊ณตํ•™์˜ ์ƒํƒœ ์ถ”์ • ๋ฌธ์ œ์—์„œ๋Š” Lie ๊ตฐ์„ ํ†ตํ•œ ํ‘œํ˜„์ด ๊ฐˆ์ˆ˜๋ก ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋กœ๋ด‡๊ณตํ•™์ž๋“ค์—๊ฒŒ Lie ์ด๋ก ์€ ์—ฌ์ „ํžˆ ์ถ”์ƒ์ ์œผ๋กœ ๋А๊ปด์ง€๊ณค ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธ€์—์„œ๋Š” Joan Solร  ๋“ฑ์ด ๋ฐœํ‘œํ•œ โ€œA micro Lie theory for state estimation in roboticsโ€ ๋…ผ๋ฌธ์˜ ๋‚ด์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ, Lie ๊ตฐ๊ณผ Lie ๋Œ€์ˆ˜์˜ ํ•ต์‹ฌ ๊ฐœ๋…์„ ๋ณต์Šตํ•˜๊ณ  ์ด๋ฅผ ๋กœ๋ด‡ ์ƒํƒœ ์ถ”์ •์— ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ retraction (\oplus ์—ฐ์‚ฐ), perturbation (์˜ค์ฐจ ํ‘œํ˜„), Jacobian ๊ณ„์‚ฐ์„ ์ค‘์‹ฌ์œผ๋กœ, ๊ธฐ์กด์˜ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ์™€ ๋ฌด์—‡์ด ๋‹ค๋ฅธ์ง€, ๋˜ ์–ด๋–ค ์ด์ ์ด ์žˆ๋Š”์ง€ ์ˆ˜์‹๊ณผ ํ•จ๊ป˜ ์ƒ์„ธํžˆ ํ•ด์„คํ•ฉ๋‹ˆ๋‹ค.

2.1 Lie ๊ตฐ๊ณผ Lie ๋Œ€์ˆ˜ ๊ธฐ๋ณธ ๊ฐœ๋… ๋ณต์Šต

Lie ๊ตฐ(Lie group)์€ ๋งค๋„๋Ÿฌ์šด(manifold) ๊ณก๋ฉด ์œ„์— ๊ทธ๋ฃน ๊ตฌ์กฐ๋ฅผ ๊ฒฐํ•ฉํ•œ ์ˆ˜ํ•™ ๊ฐ์ฒด์ž…๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, Lie ๊ตฐ G๋Š” ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๋งค๋‹ˆํด๋“œ(๊ตญ์†Œ์ ์œผ๋กœ ํ‰ํƒ„ํ•œ ๊ณต๊ฐ„)๋กœ์„œ ๊ทธ ์›์†Œ๋“ค์ด ๊ทธ๋ฃน์˜ ๋„ค ๊ฐ€์ง€ ๊ณต๋ฆฌ(ํ์‡„์„ฑ, ํ•ญ๋“ฑ์›, ์—ญ์›, ๊ฒฐํ•ฉ๋ฒ•์น™)๋ฅผ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด, Lie ๊ตฐ์€ ๊ตญ์†Œ์ ์œผ๋กœ๋Š” ์„ ํ˜• ๊ณต๊ฐ„์ฒ˜๋Ÿผ ๋ฏธ๋ถ„ ์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๋ฉด์„œ๋„ ์ „์—ญ์ ์œผ๋กœ๋Š” ๋น„์„ ํ˜• ๊ฒฐํ•ฉ(composition)์ด ํ—ˆ์šฉ๋˜๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ–์Šต๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์˜ˆ๋กœ 3์ฐจ์› ํšŒ์ „์˜ ๊ณต๊ฐ„ SO(3)๋‚˜ ๋กœ๋ด‡ ์ž์„ธ(pose)๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” SE(3) ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

๋งค๋‹ˆํด๋“œ๋ž€ ๊ตญ์†Œ์ ์œผ๋กœ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ ์ „์—ญ์ ์œผ๋กœ๋Š” ๊ณก๋ฅ  ๋“ฑ์˜ ์ œ์•ฝ์ด ์žˆ๋Š” ๊ณต๊ฐ„์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋‹จ์œ„ ๋…ธ๋ฆ„์„ ๊ฐ–๋Š” 4์ฐจ์› ๋ฒกํ„ฐ๋“ค์˜ ์ง‘ํ•ฉ(์œ ๋‹ˆํ„ฐ๋‹ˆ์–ธ)์€ 4์ฐจ์› ๊ตฌ๋ฉด S^3์„ ์ด๋ฃจ๋ฉฐ, ์ด๋Š” ๋‹จ์œ„ ์ฟผํ„ฐ๋‹ˆ์–ธ์˜ ๊ณต๊ฐ„์ด ๋ฉ๋‹ˆ๋‹ค. ์ด์ฒ˜๋Ÿผ ๋กœ๋ด‡ ์ƒํƒœ๊ฐ€ ์ถฉ์กฑํ•ด์•ผ ํ•  ์ œ์•ฝ(์˜ˆ: ์ฟผํ„ฐ๋‹ˆ์–ธ์˜ ๋‹จ์œ„ ๋…ธ๋ฆ„)์€ ๋งค๋‹ˆํด๋“œ๋ฅผ ์ •์˜ํ•˜๋ฉฐ, ์šฐ๋ฆฌ์˜ ์ƒํƒœ ๋ฒกํ„ฐ๋Š” ์ด ๋งค๋„๋Ÿฌ์šด ๊ณก๋ฉด ์œ„๋ฅผ ์›€์ง์ธ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ์ ์€, ๋งค๋‹ˆํด๋“œ ์œ„์˜ ๋ชจ๋“  ์ ๋งˆ๋‹ค ๊ณ ์œ ํ•œ ์ ‘๊ณต๊ฐ„(tangent space)์ด ์กด์žฌํ•˜๊ณ , ์ด ์ ‘๊ณต๊ฐ„์€ ๊ทธ ์ ์„ ์Šค์ณ ์ง€๋‚˜๊ฐ€๋Š” ํ‰๋ฉด์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ ‘๊ณต๊ฐ„์€ ์„ ํ˜• ๋ฒกํ„ฐ ๊ณต๊ฐ„์ด๋ฏ€๋กœ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ์œ„์—์„œ๋Š” ๋ฏธ๋ถ„์ด๋‚˜ ์„ ํ˜•๋Œ€์ˆ˜ ๊ณ„์‚ฐ์„ ์ž์œ ๋กญ๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ•œํŽธ, Lie ๊ตฐ์—๋Š” ํ•œ ํŠน๋ณ„ํ•œ ์›์†Œ(ํ•ญ๋“ฑ์› E)์™€ ๊ทธ์— ๋Œ€์‘ํ•˜๋Š” ์ ‘๊ณต๊ฐ„์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ Lie ๋Œ€์ˆ˜(Lie algebra)๋ผ๊ณ  ๋ถ€๋ฅด๋ฉฐ, ๊ธฐํ˜ธ๋กœ \mathfrak{g}=T_E G๋กœ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. Lie ๋Œ€์ˆ˜๋Š” ์ฐจ์›์ด Lie ๊ตฐ์˜ ์ž์œ ๋„์™€ ๊ฐ™๊ณ , ํ•ญ๋“ฑ์›์—์„œ์˜ ์ ‘๊ณต๊ฐ„์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฒกํ„ฐ ๊ณต๊ฐ„์˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ํŠนํžˆ Lie ๋Œ€์ˆ˜์˜ ์›์†Œ๋“ค์€ ์ข…์ข… \mathbb{R}^n์˜ ๋ฒกํ„ฐ๋กœ ๊ฐ„์ฃผํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Š” \mathfrak{g} \simeq \mathbb{R}^n (๋ฒกํ„ฐ ๊ณต๊ฐ„์œผ๋กœ ๋™ํ˜•)์ด๋ผ๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํšŒ์ „๊ตฐ SO(3)์˜ Lie ๋Œ€์ˆ˜์ธ so(3)์€ 3\times3 ๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ๋“ค์˜ ๊ณต๊ฐ„์ด์ง€๋งŒ, ์ด๋ฅผ ์ถ•๊ฐ(axis-angle) 3-๋ฒกํ„ฐ๋กœ ๋Œ€์‘์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์„œ \mathbb{R}^3์™€ ๋™ํ˜•์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฒกํ„ฐ์™€ ํ–‰๋ ฌ ๊ฐ„ ๋ณ€ํ™˜์„ ํŽธ๋ฆฌํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ํ•ดํŠธ ์—ฐ์‚ฐ(^\wedge)๊ณผ ๋ธŒ์ด ์—ฐ์‚ฐ(^\vee)์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. 3-๋ฒกํ„ฐ \omega = [\omega_x,\omega_y,\omega_z]^\top์— ๋Œ€ํ•ด ํ•ดํŠธ ์—ฐ์‚ฐ์€ so(3)์˜ ์›์†Œ์ธ [\omega]_\times (skew-symmetric matrix)์„ ๋งŒ๋“ค๊ณ , ๋ธŒ์ด ์—ฐ์‚ฐ์€ ๊ทธ ๋ฐ˜๋Œ€๋กœ ํ–‰๋ ฌ์„ ๋ฒกํ„ฐ๋กœ ๋Œ๋ ค๋†“์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Lie ๋Œ€์ˆ˜ ์›์†Œ์™€ ์œ ํด๋ฆฌ๋“œ ๋ฒกํ„ฐ๋ฅผ ์ž์œ ๋กญ๊ฒŒ ๋„˜๋‚˜๋“ค๋ฉฐ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด์ œ ์ง€์ˆ˜ ๋งต(Exponential)๊ณผ ๋กœ๊ทธ ๋งต(Logarithm)์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ง€์ˆ˜ ๋งต \text{Exp}: \mathfrak{g} \to G๋Š” Lie ๋Œ€์ˆ˜์˜ ์›์†Œ(์ ‘๊ณต๊ฐ„์˜ ๋ฒกํ„ฐ)๋ฅผ Lie ๊ตฐ์˜ ์›์†Œ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜์ด๊ณ , ๋กœ๊ทธ ๋งต \text{Log}: G \to \mathfrak{g}๋Š” ๊ทธ ์—ญ๋ณ€ํ™˜์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ํ–‰๋ ฌ ์ง€์ˆ˜ํ•จ์ˆ˜(\text{Exp})๋กœ ์ •์˜๋˜๋ฉฐ, ์ž‘์€ ๋ณ€ํ™”๋Ÿ‰์„ ๊ณก๋ฉด ์œ„์˜ ์œ ํ•œํ•œ ์›€์ง์ž„์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด so(3)์—์„œ \text{Exp}([\omega]_\times)๋Š” \omega๋งŒํผ ํšŒ์ „ํ•˜๋Š” ํšŒ์ „ํ–‰๋ ฌ R์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ๋กœ๋“œ๋ฆฌ๊ฒŒ์Šค ๊ณต์‹์œผ๋กœ ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค. ๋กœ๋“œ๋ฆฌ๊ฒŒ์Šค ๊ณต์‹์— ๋”ฐ๋ฅด๋ฉด |\omega|๋ฅผ ํšŒ์ „ ํฌ๊ธฐ๋กœ ํ•  ๋•Œ:

\text{Exp}_{SO(3)}(\omega^\wedge) = I + \frac{\sin\|\omega\|}{\|\omega\|}[\omega]_\times + \frac{1-\cos\|\omega\|}{\|\omega\|^2}[\omega]_\times^2,

์ด๋Š” \omega๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์„ ๋•Œ \text{Exp}(\omega^\wedge) \approx I + [\omega]_\times๋กœ ๊ทผ์‚ฌ๋˜๋ฉฐ ์ต์ˆ™ํ•œ ์†Œ(ๅฐ)๊ฐ๋„ ๊ทผ์‚ฌ์™€ ์ผ์น˜ํ•ฉ๋‹ˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ \text{Log}(R)๋Š” ์ฃผ์–ด์ง„ ๊ตฐ ์›์†Œ๋ฅผ ๋‹ค์‹œ Lie ๋Œ€์ˆ˜์˜ ๋ฒกํ„ฐ(ํšŒ์ „๋ฒกํ„ฐ)๋กœ ๋Œ๋ ค๋†“์Šต๋‹ˆ๋‹ค. ์ฆ‰, \text{Exp}์™€ \text{Log} ๋•๋ถ„์— ๋น„์„ ํ˜• ๊ณก๋ฉด์ธ Lie ๊ตฐ๊ณผ ์„ ํ˜• ๊ณต๊ฐ„์ธ Lie ๋Œ€์ˆ˜๋ฅผ ์„œ๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, Lie ๊ตฐ์ƒ์˜ ๋ฌธ์ œ๋ฅผ Lie ๋Œ€์ˆ˜์ƒ์˜ ๋ฌธ์ œ๋กœ ๋ณ€ํ™˜ํ•ด์„œ ํ’€ ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€ํ™˜์„ ํ™œ์šฉํ•˜๋ฉด, ๋ณต์žกํ•œ ์ œ์•ฝ์„ ์ง์ ‘ ๋‹ค๋ฃจ๋Š” ๋Œ€์‹  ๊ฐ„๋‹จํ•œ ์„ ํ˜• ๊ณต๊ฐ„์—์„œ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•œ ๋’ค ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์‹œ ๋งค๋‹ˆํด๋“œ๋กœ ์˜ฎ๊ธฐ๋Š” ๋ฐฉ๋ฒ•์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค. Solร  ๋“ฑ์˜ ๋…ผ๋ฌธ์ด ์ œ์‹œํ•˜๋Š” โ€œmicro Lie theoryโ€ ์—ญ์‹œ Lie ๊ตฐ์˜ ๊นŠ์€ ์ด๋ก  ์ค‘ ์‹ค์šฉ์ ์ธ ํ•ต์‹ฌ๋งŒ ๋ฝ‘์•„ ์“ด ๊ฒƒ์œผ๋กœ, Lie ๊ตฐ๊ณผ Lie ๋Œ€์ˆ˜๋ฅผ ์™•๋ณตํ•˜๋Š” ๊ธฐ๋ณธ ๋„๊ตฌ๋“ค๋งŒ์œผ๋กœ๋„ ๋กœ๋ด‡ ์ƒํƒœ ์ถ”์ •์— ์ถฉ๋ถ„ํ•œ ์ •๋ฐ€๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

2.2 ์ƒํƒœ ์ถ”์ •์—์„œ์˜ Manifold ์ƒํƒœ ํ‘œํ˜„๊ณผ \oplus ์—ฐ์‚ฐ (Retraction)

๋กœ๋ด‡์˜ ์ƒํƒœ๊ฐ€ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„ \mathbb{R}^n์— ๊ตญํ•œ๋˜์ง€ ์•Š๊ณ  ๊ณก๋ฉด ์œ„์— ๋†“์ด๋Š” ๊ฒฝ์šฐ, ์ด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ํŠน์ˆ˜ํ•œ ์—ฐ์‚ฐ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋“œ๋ก ์˜ ์ž์„ธ(orientation)๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋‹จ์œ„ ์ฟผํ„ฐ๋‹ˆ์–ธ์€ 4์ฐจ์› ๋ฒกํ„ฐ์ด์ง€๋งŒ ํ•ญ์ƒ ๋‹จ์œ„ ๋…ธ๋ฆ„์„ ๊ฐ€์ ธ์•ผ ํ•˜๋ฏ€๋กœ ์ž„์˜์˜ 4์ฐจ์› ๋ณ€ํ™”๋Ÿ‰์„ ๋”ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ์ด ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ๊ฐœ๋…์ด ๋ฐ”๋กœ Lie ๊ตฐ์ƒ์˜ retraction, ์ฆ‰ \oplus ์—ฐ์‚ฐ์ž…๋‹ˆ๋‹ค. ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ ์ƒํƒœ ์—…๋ฐ์ดํŠธ๋ฅผ x_{\text{new}} = x_{\text{old}} + \Delta x๋กœ ํ•œ๋‹ค๋ฉด, Lie ๊ตฐ์—์„œ๋Š” ์ด๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ์—ฐ์‚ฐ์œผ๋กœ X_{\text{new}} = X_{\text{old}} \oplus \Delta๋ฅผ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Solร  ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ํ”Œ๋Ÿฌ์Šค(\oplus) ์—ฐ์‚ฐ์ž๋กœ ํ‘œ๊ธฐํ•˜๋ฉฐ, ํ•œ ๋ฒˆ์˜ ์ง€์ˆ˜ ๋งต(Exp)๊ณผ ๊ตฐ ํ•ฉ์„ฑ(\circ)์œผ๋กœ ๊ตฌํ˜„๋ฉ๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์˜ค๋ฅธ์ชฝ ํ”Œ๋Ÿฌ์Šค (right-โŠ•)๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

Y = X \oplus \delta := X \circ \text{Exp}(\delta), \qquad \delta = Y \ominus X := \text{Log}(X^{-1}\circ Y).

์ฆ‰, Lie ๊ตฐ ์›์†Œ X์— ์ ‘๊ณต๊ฐ„์˜ ์ž‘์€ ๋ฒกํ„ฐ \delta๋ฅผ ์ง€์ˆ˜๋งต์œผ๋กœ ๊ตฐ ์›์†Œํ™”ํ•œ \text{Exp}(\delta)๋ฅผ ์˜ค๋ฅธ์ชฝ์—์„œ ๊ณฑํ•ด ์ƒˆ๋กœ์šด ์›์†Œ Y๋ฅผ ์–ป๋Š” ๊ฒƒ์ด X\oplus\delta์ž…๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ๋‘ ์›์†Œ Y, X \in G ์‚ฌ์ด์˜ โ€œ์ฐจ์ดโ€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋งˆ์ด๋„ˆ์Šค(\ominus) ์—ฐ์‚ฐ Y \ominus X๋Š” X^{-1}Y๋ผ๋Š” ๊ตฐ ์—ฐ์‚ฐ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋กœ๊ทธ๋งต์œผ๋กœ ๋ฒกํ„ฐํ™”ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ \oplus, \ominus ์—ฐ์‚ฐ์ž๋ฅผ ๋„์ž…ํ•จ์œผ๋กœ์จ, Lie ๊ตฐ์ƒ์—์„œ ์ผ๋ฐ˜ ๋ง์…ˆ์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์—๋„ ๋งˆ์น˜ ๋ฒกํ„ฐ ๋”ํ•˜๊ธฐ/๋นผ๊ธฐ์ฒ˜๋Ÿผ ์ƒํƒœ์˜ ํ•ฉ์„ฑ๊ณผ ์ฐจ์ด๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ \oplus ์—ฐ์‚ฐ์€ retraction(๋ฆฌํŠธ๋ž™์…˜)์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Š” ์ตœ์ ํ™”๋‚˜ ํ•„ํ„ฐ๋ง ๋งฅ๋ฝ์—์„œ ๊ตญ์†Œ ์ขŒํ‘œ๊ณ„๋กœ ์ด๋™ํ–ˆ๋‹ค๊ฐ€ ๋‹ค์‹œ ๋งค๋‹ˆํด๋“œ๋กœ ๋ณต์›ํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์ •ํ™•ํ•œ ์ง€์ˆ˜๋งต \text{Exp}๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ retraction์„ ๊ตฌํ˜„ํ•˜๋ฏ€๋กœ, ๋งค์šฐ ์—„๋ฐ€ํ•œ ๋ฐฉ์‹์œผ๋กœ ์ƒํƒœ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, ์œ„ ๊ทธ๋ฆผ์€ ๋งค๋‹ˆํด๋“œ ๊ณก๋ฉด (์˜ˆ: ๋‹จ์œ„ ๊ตฌ๋ฉด) ์œ„์˜ ํ•œ ์ƒํƒœ X์— ๋Œ€ํ•ด \oplus ์—ฐ์‚ฐ์˜ ๊ธฐํ•˜ํ•™์  ์˜๋ฏธ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์  X๊ฐ€ ๋งค๋‹ˆํด๋“œ ์œ„์— ์ฃผ์–ด์กŒ์„ ๋•Œ, ๊ทธ ์ ‘ํ‰๋ฉด(ํšŒ์ƒ‰) ์œ„์˜ ํ•œ ๋ฒกํ„ฐ \tau (๋นจ๊ฐ„ ํ™”์‚ดํ‘œ)๋ฅผ ์ทจํ•ด ์ง€์ˆ˜๋งต์„ ์ ์šฉํ•˜๋ฉด ๊ณก๋ฉด ์œ„์˜ ํ•œ ์ ์œผ๋กœ ์‚ฌ์ƒ๋ฉ๋‹ˆ๋‹ค. X \oplus \tau = X \cdot \text{Exp}(\tau)์˜ ๊ฒฐ๊ณผ๋กœ ์–ป์–ด์ง„ ์ƒˆ๋กœ์šด ์  X'์ด ํŒŒ๋ž€ ํ™”์‚ดํ‘œ์˜ ๋จธ๋ฆฌ๋กœ ํ‘œ์‹œ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๊ณก๋ฉด ์œ„์˜ X์—์„œ ์‹œ์ž‘ํ•˜์—ฌ ์ ‘๊ณต๊ฐ„์„ ๋”ฐ๋ผ \tau๋งŒํผ ์›€์ง์˜€๋‹ค๊ฐ€ ๋‹ค์‹œ ๊ณก๋ฉด์œผ๋กœ ๋Œ์•„์˜ค๋Š” ๋™์ž‘์— ํ•ด๋‹นํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, \tau๊ฐ€ ์ž‘๋‹ค๋ฉด X'๋Š” X์—์„œ ์กฐ๊ธˆ ์ด๋™ํ•œ ์œ„์น˜๊ฐ€ ๋˜๋ฉฐ, ํ•ญ์ƒ ๊ณก๋ฉด ์œ„์— ๋จธ๋ฌด๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ƒํƒœ ์ œ์•ฝ์ด ์ž๋™์œผ๋กœ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆผ ์ƒ๋‹จ์˜ I๋Š” ๊ตฐ์˜ ํ•ญ๋“ฑ์›์œผ๋กœ, ์ด๋•Œ \tau๊ฐ€ ํ•ญ๋“ฑ์› ๊ทผ์ฒ˜(๊ธ€๋กœ๋ฒŒ ๊ธฐ์ค€)์™€ X ๊ทผ์ฒ˜(๋กœ์ปฌ ๊ธฐ์ค€)์—์„œ ๋™์ผํ•˜๊ฒŒ ์ทจ๊ธ‰๋จ์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” Lie ๊ตฐ์—์„œ๋Š” ๋ชจ๋“  ์ ‘๊ณต๊ฐ„์ด ๋ณธ์งˆ์ ์œผ๋กœ ๋™์ผํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์ด๋ฉฐ, ๊ณง ์„ค๋ช…ํ•  ์ขŒ/์šฐ ํ”Œ๋Ÿฌ์Šค์˜ ์ฐจ์ด์™€ Adjoint์™€๋„ ์—ฐ๊ฒฐ๋˜๋Š” ๊ฐœ๋…์ž…๋‹ˆ๋‹ค.

\oplus ์—ฐ์‚ฐ์—๋Š” ์˜ค๋ฅธ์ชฝ-ํ”Œ๋Ÿฌ์Šค์™€ ์™ผ์ชฝ-ํ”Œ๋Ÿฌ์Šค ๋‘ ๊ฐ€์ง€ ๋ฒ„์ „์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” Lie ๊ตฐ์˜ ๋น„๊ฐ€ํ™˜์„ฑ(non-commutativity) ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•˜๋Š” ๊ตฌ๋ถ„์œผ๋กœ, ๋ณ€ํ™”๋Ÿ‰์„ ์™ผ์ชฝ์—์„œ ๊ณฑํ•˜๋А๋ƒ ์˜ค๋ฅธ์ชฝ์—์„œ ๊ณฑํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์˜ค๋ฅธ์ชฝ-ํ”Œ๋Ÿฌ์Šค์—์„œ๋Š” X \oplus \delta = X\text{Exp}(\delta)์ธ ๋ฐ˜๋ฉด, ์™ผ์ชฝ-ํ”Œ๋Ÿฌ์Šค๋Š” X \oplus^L \delta = \text{Exp}(\delta)X์™€ ๊ฐ™์ด ์ •์˜๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‘ ๋ฐฉ์‹ ๋ชจ๋‘ ํ—ˆ์šฉ๋˜์ง€๋งŒ, ๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ์ปฌ ์ขŒํ‘œ๊ณ„์—์„œ์˜ ํ‘œํ˜„์— ๋งž๊ฒŒ ์˜ค๋ฅธ์ชฝ-ํ”Œ๋Ÿฌ์Šค๋ฅผ ๊ธฐ๋ณธ์œผ๋กœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์‰ฝ๊ฒŒ ๋งํ•ด, ํ˜„์žฌ ์ถ”์ •๊ฐ’ X๋ฅผ ๊ธฐ์ค€ ์ขŒํ‘œ๋กœ ์‚ผ๊ณ  ๊ทธ ์ ‘๊ณต๊ฐ„์—์„œ ์˜ค์ฐจ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹์„ ํƒํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด X ์ž์ฒด๊ฐ€ ๋ณ€ํ•  ๋•Œ ์ ‘๊ณต๊ฐ„๋„ ํ•จ๊ป˜ ์›€์ง์ด๋ฏ€๋กœ (์ ‘ํ‰๋ฉด์ด ํ•ญ์ƒ X์— ๋ถ™์–ด๋‹ค๋‹˜), ์˜ค์ฐจ์˜ ํ•ด์„์ด ๊ตญ์†Œ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ๋ฌธํ—Œ์—์„œ๋Š” ํ•ญ๋“ฑ์›์— ๋Œ€ํ•œ ์ „์—ญ ์ขŒํ‘œ๋กœ ์˜ค์ฐจ๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ๋„ ํ•˜์ง€๋งŒ, ๊ทธ ๊ฒฝ์šฐ์—๋„ ๋‘ ํ‘œํ˜„์€ Adjoint ๋ณ€ํ™˜์œผ๋กœ ์ƒํ˜ธ ๋ณ€ํ™˜ ๊ฐ€๋Šฅํ•จ์ด ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฆ‰, ์ „์—ญ์ ์ธ ์˜ค์ฐจ \delta_E์™€ ๊ตญ์†Œ์ ์ธ ์˜ค์ฐจ \delta_X ์‚ฌ์ด์—๋Š” \delta_X = \text{Ad}_X^{-1},\delta_E ๊ด€๊ณ„๊ฐ€ ์žˆ์œผ๋ฉฐ, ๊ณต๋ถ„์‚ฐ ๋“ฑ์˜ ๋ณ€ํ™˜์—๋„ ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค. Solร  ๋“ฑ์˜ ์„ค๋ช…์— ๋”ฐ๋ฅด๋ฉด ์ด ๋…ผ๋ฌธ ๋ฐ ์—ฌ๋Ÿฌ ์ตœ์‹  ๋ฐฉ๋ฒ•๋“ค์€ ๋กœ์ปฌ perturbation X \oplus \delta๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ๋งŒ์•ฝ ๋‹ค๋ฅธ ์ ‘๊ทผ๋ฒ•์—์„œ ์ „์—ญ ์˜ค์ฐจ(E \oplus \delta ํ˜•ํƒœ)๋ฅผ ์‚ฌ์šฉํ•˜๋”๋ผ๋„ ์ตœ์ข… ๊ฒฐ๊ณผ์—์„œ ์ฐจ์ด๋Š” Adjoint๋กœ ๋ณด์ •๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ •๋ฆฌํ•˜์ž๋ฉด, \oplus ์—ฐ์‚ฐ์€ ํ˜„์žฌ ์ƒํƒœ์— ์ž‘์€ Lie ๋Œ€์ˆ˜ ์˜ค์ฐจ๋ฅผ ์ ์šฉํ•˜์—ฌ ์ƒํƒœ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋Š” ์—ฐ์‚ฐ์ด๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ•„ํ„ฐ๋‚˜ ์ตœ์ ํ™”์—์„œ ํ•ญ์ƒ ์œ ํšจํ•œ ์ƒํƒœ (Lie ๊ตฐ ์›์†Œ)๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ \ominus ์—ฐ์‚ฐ์€ ๋‘ ์ƒํƒœ ๊ฐ„์˜ ์ƒ๋Œ€์ ์ธ ์˜ค์ฐจ๋ฅผ Lie ๋Œ€์ˆ˜ ๋ฒกํ„ฐ๋กœ ์‚ฐ์ถœํ•˜์—ฌ ์ ‘๊ณต๊ฐ„์ƒ์˜ ์ฐจ๋กœ ํ‘œํ˜„ํ•ด์ค๋‹ˆ๋‹ค. ์ด ๋‘ ์—ฐ์‚ฐ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” ๋งˆ์น˜ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ ํ•˜๋“ฏ ์ƒํƒœ๋ฅผ ๋”ํ•˜๊ณ  ๋นผ๋ฉฐ ์˜ค์ฐจ๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๊ณ , ์ด๋Ÿฌํ•œ ์•„์ด๋””์–ด๋Š” ์˜ค์ฐจ ์ƒํƒœ(error-state) ์นผ๋งŒ ํ•„ํ„ฐ๋กœ๋„ ๋ถˆ๋ฆฌ๋Š” ํ˜„๋Œ€ ๋กœ๋ด‡ ์ƒํƒœ ์ถ”์ • ํ•„ํ„ฐ๋“ค์˜ ํ† ๋Œ€๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

2.3 Lie ์ด๋ก ์„ ํ™œ์šฉํ•œ ์ƒํƒœ ์ถ”์ •: ์˜ค์ฐจ ํ‘œํ˜„๊ณผ ํ•„ํ„ฐ ๊ตฌ์„ฑ

์ด์ œ ์œ„์—์„œ ์ •์˜ํ•œ \oplus, \ominus ๊ฐœ๋…์„ ์‹ค์ œ ์นผ๋งŒ ํ•„ํ„ฐ์™€ ๊ฐ™์€ ์ƒํƒœ ์ถ”์ • ๋ฌธ์ œ์— ์–ด๋–ป๊ฒŒ ์ ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์ฐธ๋œ ์ƒํƒœ(true state)์™€ ์ถ”์ • ์ƒํƒœ(estimate) ์‚ฌ์ด์˜ ์˜ค์ฐจ(perturbation)๋ฅผ Lie ๋Œ€์ˆ˜์˜ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•˜๊ณ  ์ถ”์ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ถ”์ •๊ฐ’์„ X (Lie ๊ตฐ์˜ ์›์†Œ)๋ผ ํ•˜๊ณ  ์‹ค์ œ ๊ฐ’์„ X^*๋ผ๊ณ  ํ•˜๋ฉด, ๋‘ ์ƒํƒœ ๊ฐ„ ์˜ค์ฐจ๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

\tilde{\xi} := X^* \ominus X = \text{Log}(X^{-1} X^*) \in \mathfrak{g},

์—ฌ๊ธฐ์„œ \tilde{\xi}๋Š” Lie ๋Œ€์ˆ˜์ƒ์˜ ์ž‘์€ ๋ฒกํ„ฐ๋กœ์„œ, ์ถ”์ •์—์„œ ์‹ค์ œ๋กœ ๊ฐ€๋Š” โ€œ์˜ค์ฐจ ์ƒํƒœโ€๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. X^* = X \oplus \tilde{\xi}๋กœ ํ’€์–ด์“ฐ๋ฉด X^* = X \text{Exp}(\tilde{\xi})๊ฐ€ ๋˜๋ฉฐ, ์‹ค์ œ ์ƒํƒœ๋Š” ์ถ”์ • ์ƒํƒœ์— ์ž‘์€ ์ง€์ˆ˜ ์ด๋™์„ ๊ฐ€ํ•œ ๊ฒƒ์œผ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. ์ด ์˜ค์ฐจ ๋ฒกํ„ฐ๋ฅผ ์ƒํƒœ๋กœ ์‚ผ์•„ ์นผ๋งŒ ํ•„ํ„ฐ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด, ํ•„ํ„ฐ์˜ ์ถ”์ •์€ ํ•ญ์ƒ X ์ฃผ๋ณ€์˜ ๊ตญ์†Œ ์„ ํ˜• ๊ณต๊ฐ„์—์„œ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด, ํ•„ํ„ฐ๋Š” \tilde{\xi}๋ผ๋Š” ์ ‘๊ณต๊ฐ„์˜ ๊ฐ€์šฐ์‹œ์•ˆ ์ƒํƒœ๋ฅผ ์ถ”์ ํ•˜๋ฉฐ, ํ•„์š”ํ•œ ๊ฒฝ์šฐ ์ด๊ฒƒ์„ \text{Exp}๋ฅผ ํ†ตํ•ด ๋‹ค์‹œ ๊ตฐ์ƒ์˜ X๋ฅผ ๋ณด์ •ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์ ‘๊ทผ์„ ํ”ํžˆ ์˜ค์ฐจ-์ƒํƒœ Kalman ํ•„ํ„ฐ๋ผ๊ณ  ํ•˜๋ฉฐ, Lie ๊ตฐ ์ด๋ก ์„ ์ ์šฉํ•œ ํ•„ํ„ฐ์—์„œ๋Š” ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

Solร  ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ Lie ๊ตฐ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ์˜ ์ ˆ์ฐจ๋ฅผ ์œ ๋„ํ•˜๊ณ , ๊ทธ๊ฒƒ์ด ์ „ํ†ต์ ์ธ EKF์™€ ๊ฑฐ์˜ ๋™์ผํ•œ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์šฐ์„  ์˜ˆ์ธก ๋‹จ๊ณ„๋ฅผ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค. ๋กœ๋ด‡์˜ ์ƒํƒœ๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ๋ชจ๋ธ์ด ์ฃผ์–ด์กŒ๋‹ค๊ณ  ํ•  ๋•Œ, ๋งŒ์•ฝ ์ƒํƒœ๊ฐ€ Lie ๊ตฐ ์›์†Œ๋ผ๋ฉด ๊ทธ ์ƒํƒœ ์ฒœ์ด ์—ญ์‹œ ๊ตฐ ์—ฐ์‚ฐ์œผ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ž„์˜์˜ ์ž‘์€ ์‹œ๊ฐ„ \delta t ๋™์•ˆ ์ƒํƒœ๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹ \dot{X}(t) = f(X(t), u(t))๊ฐ€ ์žˆ๋‹ค๋ฉด, ์ด๋ฅผ ์ ๋ถ„ํ•˜์—ฌ ์ด์‚ฐํ™”ํ•  ๋•Œ \oplus ์—ฐ์‚ฐ์„ ์ด์šฉํ•œ ๋ˆ„์ ๊ณฑ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

X_{k+1} = X_k \oplus \tau_k = X_k \circ \text{Exp}(\tau_k), \qquad \text{์—ฌ๊ธฐ์„œ } \tau_k \approx f(X_k, u_k)\,\delta t_k

์ฆ‰ ์ด์ „ ์ƒํƒœ X_k์— ๊ฐ ์‹œ๊ฐ„๊ตฌ๊ฐ„์˜ ์ž‘์€ ๋ณ€ํ™”๋Ÿ‰ \tau_k (Lie ๋Œ€์ˆ˜ ๋ฒกํ„ฐ)๋ฅผ ์ง€์ˆ˜์ง€๋„๋ฅผ ํ†ตํ•ด ์ ์šฉํ•จ์œผ๋กœ์จ ๋‹ค์Œ ์ƒํƒœ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ ์˜ˆ๋กœ, X๊ฐ€ 3์ฐจ์› ํšŒ์ „ํ–‰๋ ฌ R์ด๊ณ  ์ œ์–ด์ž…๋ ฅ์œผ๋กœ ๊ฐ์†๋„ \omega๊ฐ€ ์ฃผ์–ด์ง€๋Š” ๊ฒฝ์šฐ, R_{k+1} = R_k \text{Exp}([\omega_k \delta t]*ร—)์™€ ๊ฐ™์ด ์˜ˆ์ธก์ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ์ด ์‹์€ R*{k+1} = R_k (I + [\omega_k \delta t]_\times)๋กœ 1์ฐจ ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์†Œ์œ„ ์ •ํ™•ํ•œ ๋ฏธ๋ถ„์ ๋ถ„ ๋ฐฉ์‹์„ ์ œ๊ณตํ•˜์—ฌ, ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ ์˜ค์ผ๋Ÿฌ ๊ฐ์„ ๋”ํ•˜๋Š” ๋“ฑ์˜ ๊ทผ์‚ฌ๋ณด๋‹ค ์•ˆ์ •์ ์ด๊ณ  ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

์˜ˆ์ธก ๋‹จ๊ณ„์˜ ๊ณต๋ถ„์‚ฐ ์ „ํŒŒ๋ฅผ ์œ„ํ•ด์„œ๋Š” ์„ ํ˜•ํ™”(Jacobian)๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. Lie ๊ตฐ์—์„œ๋Š” ์ƒํƒœ ์ฒœ์ด๊ฐ€ ๋น„์„ ํ˜•์ด์ง€๋งŒ, ์˜ค์ฐจ ์ƒํƒœ \tilde{\xi}์˜ ๊ด€์ ์—์„œ๋Š” ์ด๋ฅผ ์„ ํ˜•ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. X_{k+1} = X_k \text{Exp}(\tau_k)๋ฅผ X_k์™€ \tau_k์— ๋Œ€ํ•ด ๋ฏธ์†Œ ๋ณ€ํ™”์‹œ์ผœ Jacobian์„ ๊ตฌํ•˜๋ฉด, ์ด๋Š” ๋Œ€๋žต์ ์œผ๋กœ F_k = \frac{\partial (X_k \circ \text{Exp}(\tau_k))}{\partial \tilde{\xi}_k}์™€ ๊ฐ™์€ ๊ณ„์‚ฐ์„ Lie ๋Œ€์ˆ˜ ๊ณต๊ฐ„์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ๋ฉ๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ Jacobian ๊ณ„์‚ฐ์€ ๋‹ค์Œ ์ ˆ์—์„œ ๋‹ค๋ฃจ๊ฒ ์ง€๋งŒ, ์—ฌ๊ธฐ์„œ๋Š” ๊ฒฐ๊ณผ์ ์œผ๋กœ Lie ๊ตฐ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๊ณต์‹์ด ๊ธฐ์กด EKF์˜ ํ˜•ํƒœ์™€ ๊ฑฐ์˜ ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ ๋…ผ๋ฌธ์—์„œ๋„ โ€œ์ด๋Ÿฌํ•œ Jacobian๋“ค์„ ์‚ฌ์šฉํ•˜๋ฉด Lie ๊ตฐ์—์„œ์˜ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ ๊ณต์‹์ด ๋ฒกํ„ฐ ๊ณต๊ฐ„์—์„œ์™€ ๋งค์šฐ ์œ ์‚ฌํ•œ ํ˜•ํƒœ๋ฅผ ๋ค๋‹คโ€๊ณ  ์–ธ๊ธ‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ์นผ๋งŒ ํ•„ํ„ฐ์˜ ์˜ˆ์ธก/๊ฐฑ์‹  ๊ณต์‹์„ ๊ฑฐ์˜ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๋˜, ์ƒํƒœ ๋”ํ•˜๊ธฐ(+)๋ฅผ \oplus๋กœ ๋ฐ”๊พธ๊ณ , ํ•„์š”ํ•œ Jacobian ํ–‰๋ ฌ๋“ค๋งŒ ์ƒˆ๋กญ๊ฒŒ ๊ณ„์‚ฐํ•ด์ฃผ๋ฉด ๋œ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค. ์š”์ปจ๋Œ€, ํ‹€์€ ๋™์ผํ•˜๊ณ  ๋‚ด์šฉ๋ฌผ๋งŒ Lie ๊ตฐ์— ๋งž๊ฒŒ ์กฐ์ •๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋‹ค์Œ์œผ๋กœ ๊ฐฑ์‹  ๋‹จ๊ณ„๋ฅผ ์ƒ๊ฐํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๋กœ๋ด‡ ์„ผ์„œ๋กœ๋ถ€ํ„ฐ ๊ด€์ธก๋œ ๊ฐ’ z๊ฐ€ ์ƒํƒœ X์— ๋Œ€ํ•œ ์–ด๋–ค ํ•จ์ˆ˜ h(X)๋กœ ์ฃผ์–ด์ง„๋‹ค๊ณ  ํ•  ๋•Œ, EKF์—์„œ๋Š” ์ž”์ฐจ y = z - h(\hat{x}) ๋ฐ ๊ด€์ธก Jacobian H = \partial h/\partial x ๋“ฑ์„ ๊ตฌํ•ด์„œ ์นผ๋งŒ ์ด๋“์„ ๊ณ„์‚ฐํ•˜๊ณ  ์ถ”์ •๊ฐ’์„ ๋ณด์ •ํ•ฉ๋‹ˆ๋‹ค. Lie ๊ตฐ์—์„œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ์˜ˆ์ธก ๊ด€์ธก๊ฐ’ h(X_{k|k-1})์™€ ์‹ค์ œ ๊ด€์ธก z_k์˜ ์ฐจ์ด๋ฅผ \ominus ์—ฐ์‚ฐ์œผ๋กœ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ \tilde{y} := z_k \ominus h(X_{k|k-1}) = \text{Log}!\big(h(X_{k|k-1})^{-1} \circ z_k\big) ๊ฐ™์€ ํ˜•ํƒœ๋กœ ์ž”์ฐจ๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ด€์ธก๊ฐ’์ด ๋งŒ์•ฝ Lie ๊ตฐ (์˜ˆ: ์นด๋ฉ”๋ผ๋กœ ๋ณธ ๋กœ๋ด‡์˜ ์ž์„ธ ์ธก์ •์ด ๋˜ ํ•˜๋‚˜์˜ Lie ๊ตฐ ๊ฐ’์ผ ๋•Œ)์ด๋ผ๋ฉด ํ•„์š”ํ•˜๊ณ , ์ผ๋ฐ˜์ ์ธ ์Šค์นผ๋ผ๋‚˜ ๋ฒกํ„ฐ ๊ด€์ธก์˜ ๊ฒฝ์šฐ์—๋Š” ๋ณดํ†ต \ominus๋ฅผ ์‹ค์ˆ˜ ๋บ„์…ˆ์œผ๋กœ ๋Œ€์ฒดํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ์€ ์ƒํƒœ์™€ ๊ด€์ธก์„ ๋™์ผํ•œ ๊ตญ์†Œ ์ขŒํ‘œ๊ณ„๋กœ ์‚ฌ์ƒํ•˜์—ฌ ๋น„๊ตํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ๊ด€์ธก ํ•จ์ˆ˜์˜ Jacobian H๋„ h: G \to \mathbb{R}^m์˜ ๋ฏธ๋ถ„์„ ๊ณ„์‚ฐํ•˜์—ฌ ๊ตฌํ•˜๋Š”๋ฐ, ์ด ์—ญ์‹œ \frac{\partial h}{\partial X}(X) = \lim_{\tau\to0} \frac{h(X\oplus \tau) \ominus h(X)}{\tau}๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์–ป์€ ๊ด€์ธก Jacobian H์™€ ์•ž์„œ์˜ ์˜ˆ์ธก Jacobian F ๋“ฑ์„ ์‚ฌ์šฉํ•˜๋ฉด, ์นผ๋งŒ ํ•„ํ„ฐ์˜ ๊ณต๋ถ„์‚ฐ ์˜ˆ์ธก/๊ฐฑ์‹  ๊ณต์‹์€ ๊ธฐ์กด๊ณผ ๋™์ผํ•˜๊ฒŒ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค:

  • ์˜ˆ์ธก: P_{k|k-1} = F_k,P_{k-1|k-1},F_k^\top + Q_k
  • ๊ฐฑ์‹ : K_k = P_{k|k-1} H_k^\top (H_k P_{k|k-1} H_k^\top + R_k)^{-1},
  • ์ƒํƒœ ๋ณด์ •: \hat{X}*{k|k} = \hat{X}*{k|k-1} \oplus (K_k \tilde{y}_k),
  • ๊ณต๋ถ„์‚ฐ ๋ณด์ •: P_{k|k} = (\mathbb{I} - K_k H_k) P_{k|k-1},

์—ฌ๊ธฐ์„œ Q_k, R_k๋Š” ๊ณผ์ • ๋ฐ ๊ด€์ธก ์žก์Œ ๊ณต๋ถ„์‚ฐ์ด๊ณ , K_k๋Š” ์นผ๋งŒ ์ด๋“์ž…๋‹ˆ๋‹ค. ์œ„์—์„œ ์ƒํƒœ ๋ณด์ • ๋‹จ๊ณ„์— \oplus ์—ฐ์‚ฐ์ด ์‚ฌ์šฉ๋œ ๊ฒƒ์— ์ฃผ๋ชฉํ•˜์„ธ์š”. ํ•„ํ„ฐ๊ฐ€ ๊ณ„์‚ฐํ•œ ์˜ค์ฐจ ์ƒํƒœ ์ถ”์ • K_k \tilde{y}_k (์ ‘๊ณต๊ฐ„ ๋ฒกํ„ฐ)๋ฅผ \oplus๋ฅผ ํ†ตํ•ด ์‹ค์ œ ์ถ”์ •๊ฐ’์— ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์ƒˆ๋กœ์šด \hat{X}๋Š” ํ•ญ์ƒ ์œ ํšจํ•œ Lie ๊ตฐ ์›์†Œ๋กœ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. ์ด์ฒ˜๋Ÿผ Lie ๊ตฐ์„ ์‚ฌ์šฉํ•œ ์นผ๋งŒ ํ•„ํ„ฐ๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ๋Š” ๊ธฐ์กด EKF์™€ ๋™์ผํ•˜์ง€๋งŒ, ๋‚ด๋ถ€ ์—ฐ์‚ฐ์„ Lie ๊ตฐ์— ๋งž๊ฒŒ ์กฐ์ •ํ•˜์—ฌ ๊ณก๋ฉด ์œ„์˜ ์ƒํƒœ๋„ ์ผ๊ด€๋˜๊ฒŒ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค. Solร  ๋“ฑ์€ ์ด๋ฅผ ๋‘๊ณ  โ€œ์šฐ๋ฆฌ์˜ ๋ฏธ์†Œ Lie ์ด๋ก ์„ ํ™œ์šฉํ•˜๋ฉด ๊ฒฐ๊ณผ์ ์œผ๋กœ ์–ป์–ด์ง€๋Š” ํ•„ํ„ฐ ๊ณต์‹์ด ํ‘œ์ค€ EKF ๊ณต์‹๊ณผ ๊ฑฐ์˜ ๋‹ฎ์€ ๊ผดโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋ก ์€ SLAM, ๋น„์ฃผ์–ผ ์˜ค๋„๋ฉ”ํŠธ๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ชจ์…˜ ์ถ”์ • ๋ถ„์•ผ์—์„œ ์‹ค์šฉ์ ์ธ ๊ฐ€์น˜๋ฅผ ์ž…์ฆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—๋Š” ๋ช‡ ๊ฐ€์ง€ ์‘์šฉ ์˜ˆ์ œ์™€ ํ•จ๊ป˜, ์ฃผ์š” Lie ๊ตฐ(SO(2), SO(3), SE(3), ์ฟผํ„ฐ๋‹ˆ์–ธ ๋“ฑ)์— ๋Œ€ํ•œ ์ˆ˜์‹ ์น˜ํŠธ์‹œํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด, ์‹ค๋ฌด์ž๊ฐ€ ๋ฐ”๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ์ €์ž๋“ค์€ ์ด ์ด๋ก ์„ ๊ตฌํ˜„ํ•œ C++ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ manif๋ฅผ ๊ณต๊ฐœํ•˜์—ฌ, ๊ฐœ๋ฐœ์ž๋“ค์ด ๋ณด๋‹ค ์‰ฝ๊ฒŒ Lie ์ด๋ก  ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ ์ ˆ์—์„œ๋Š” ์•ž์„œ ์–ธ๊ธ‰๋œ Jacobians(๋ฏธ๋ถ„) ๊ณ„์‚ฐ์— ๋Œ€ํ•ด ์กฐ๊ธˆ ๋” ์ž์„ธํžˆ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

2.4 Lie ๊ตฐ ์œ„์˜ ๋ฏธ๋ถ„: Jacobian ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•

์ƒํƒœ ์ถ”์ •์—์„œ ํ•ต์‹ฌ์€ ์„ ํ˜•ํ™”, ์ฆ‰ Jacobian ํ–‰๋ ฌ์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๊ตฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Lie ๊ตฐ์—์„œ๋Š” ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์ด ๋ชจ๋‘ ๊ณก๋ฉด ์œ„์— ์žˆ์œผ๋ฏ€๋กœ, ๊ทธ ๋ฏธ๋ถ„ ์ •์˜๋ฅผ ์•ฝ๊ฐ„ ๋ณ€ํ˜•ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ๋‹ค๋ณ€์ˆ˜ ํ•จ์ˆ˜์˜ Jacobian์€ J = \frac{\partial f(x)}{\partial x} = \lim_{h\to0}\frac{f(x+h)-f(x)}{h}๋กœ ์ •์˜๋˜์ง€์š”. Lie ๊ตฐ์—์„œ๋Š” ๋บ„์…ˆ ๋Œ€์‹  \ominus๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์œ ์‚ฌํ•œ ์ •์˜๋ฅผ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•จ์ˆ˜ f: M \to N๊ฐ€ Lie ๊ตฐ M์˜ ์›์†Œ๋ฅผ ๋ฐ›์•„ N (๋˜ ๋‹ค๋ฅธ Lie ๊ตฐ ํ˜น์€ ๋ฒกํ„ฐ ๊ณต๊ฐ„)์˜ ์›์†Œ๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค๊ณ  ํ•  ๋•Œ, X \in M์—์„œ์˜ Jacobian \frac{\partial f}{\partial X}(X)๋ฅผ ์ •์˜ํ•˜๋Š” ํ•œ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค:

\frac{\partial f}{\partial X}(X) ~:=~ \lim_{\tau \to 0} \frac{\,f(X \oplus \tau)\; \ominus\; f(X)\,}{\tau}\,

์—ฌ๊ธฐ์„œ \tau \in T_X M๋Š” X์˜ ์ ‘๊ณต๊ฐ„์—์„œ ์ž„์˜์˜ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์ž‘์€ ๋ณ€ํ™”์ž…๋‹ˆ๋‹ค. ๋ถ„์ž์˜ f(X \oplus \tau)\ominus f(X)๋Š” f ์ถœ๋ ฅ ๊ณต๊ฐ„์˜ ์ ‘๊ณต๊ฐ„์— ๋†“์ธ ๋ฒกํ„ฐ๊ฐ€ ๋˜๋ฉฐ, ์ด๋ฅผ \tau๋กœ ๋‚˜๋ˆ„์–ด \tau \to 0 ๊ทนํ•œ์„ ์ทจํ•˜๋ฉด ๋‘ ์ ‘๊ณต๊ฐ„ ์‚ฌ์ด์˜ ์„ ํ˜• ์‚ฌ์ƒ(matrix)์œผ๋กœ ์ˆ˜๋ ดํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ๋ถ„์ž์—์„œ \ominus๋ฅผ ์ทจํ•œ ๋•๋ถ„์— f(X)์˜ ๋ณ€ํ™”๋Ÿ‰ ์—ญ์‹œ ์ถœ๋ ฅ ๊ณต๊ฐ„์˜ ๊ตญ์†Œ์  ์„ ํ˜• ์ขŒํ‘œ๋กœ ํ‘œํ˜„๋œ ์ ์— ์œ ์˜ํ•˜์„ธ์š”. ์ด๋ ‡๊ฒŒ ์ •์˜๋œ Jacobian์€ ์ž…๋ ฅ X์˜ ๊ตญ์†Œ ์ ‘๊ณต๊ฐ„์—์„œ ์ถœ๋ ฅ f(X)์˜ ๊ตญ์†Œ ์ ‘๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘๋˜๋Š” m\times n ํ–‰๋ ฌ์ด๋ฉฐ, ์šฐ๋ฆฌ๊ฐ€ ์ตํžˆ ์•„๋Š” Jacobian ๊ฐœ๋…์„ Lie ๊ตฐ ์ƒํ™ฉ์— ๋งž๊ฒŒ ์ผ๋ฐ˜ํ™”ํ•œ ๊ฒƒ์— ํ•ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

์ด ์ •์˜๋Š” ๊ฐœ๋…์ ์œผ๋กœ๋Š” ๊ฐ„๋‹จํ•˜์ง€๋งŒ, ์‹ค์ œ Jacobian์„ ๊ณ„์‚ฐํ•  ๋•Œ๋Š” ๋ณดํ†ต ํ•จ์ˆ˜ f๋ฅผ ์ด๋ฃจ๋Š” ๊ธฐ๋ณธ ์—ฐ์‚ฐ๋“ค์— ๋Œ€ํ•œ ๋ฏธ๋ถ„์„ ์กฐํ•ฉํ•˜๋Š” ๋ฐฉ์‹์ด ๋” ํšจ์œจ์ ์ž…๋‹ˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ Solร  ๋…ผ๋ฌธ์—์„œ๋„ โ€œ์—ญํ•จ์ˆ˜(Inversion), ํ•ฉ์„ฑ(Composition), ์ง€์ˆ˜(Exponentiation), ์ž‘์šฉ(Action) ๋“ฑ์˜ ๋ถ€๋ถ„์  ๋ฏธ๋ถ„ ๋ธ”๋ก์„ ์ด์šฉํ•˜๋ฉด ์ž„์˜์˜ ๋ฏธ๋ถ„์„ ์ฒด์ธ ๋ฃฐ๋กœ ์‰ฝ๊ฒŒ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, Lie ๊ตฐ์—์„œ ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š” ๊ธฐ๋ณธ ํ•จ์ˆ˜๋“ค์˜ Jacobian์„ ๋ฏธ๋ฆฌ ์œ ๋„ํ•ด ๋‘๊ณ , ์ด๋ฅผ ์กฐํ•ฉํ•˜๋ฉด ์ž„์˜์˜ ๋ณต์žกํ•œ f์˜ Jacobian๋„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ตฐ์˜ ๊ณฑ Y = X \circ U์— ๋Œ€ํ•ด ์ž…๋ ฅ X์— ๋Œ€ํ•œ ๋ฏธ๋ถ„์ด๋‚˜ U์— ๋Œ€ํ•œ ๋ฏธ๋ถ„, ์—ญ์› X^{-1}์— ๋Œ€ํ•œ ๋ฏธ๋ถ„, ๋กœ๊ทธ/์ง€์ˆ˜ ๋งต์— ๋Œ€ํ•œ ๋ฏธ๋ถ„ ๋“ฑ์ด ๊ทธ๋Ÿฌํ•œ ๊ธฐ๋ณธ ๋ธ”๋ก๋“ค์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๋ฏธ๋ถ„๋“ค์„ ๊ตฌํ•˜๋Š” ๊ณผ์ •์—์„œ ๋“ฑ์žฅํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋กœ Adjoint(์•„์กฐ์ธํŠธ)์™€ Left Jacobian(์™ผ์ชฝ ์•ผ์ฝ”๋น„์•ˆ) ๊ฐ™์€ ๊ฐœ๋…์ž…๋‹ˆ๋‹ค.

  • Adjoint ํ–‰๋ ฌ \text{Ad}_X: ์ด๋Š” Lie ๊ตฐ G์—์„œ ํŠน์ • ์›์†Œ X๊ฐ€ Lie ๋Œ€์ˆ˜ ๊ณต๊ฐ„์— ๊ฐ–๋Š” ์ž‘์šฉ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ง๊ด€์ ์œผ๋กœ, \text{Ad}_X: \mathfrak{g} \to \mathfrak{g}๋Š” ํ•ญ๋“ฑ์›์—์„œ์˜ ์ž‘์€ ์›€์ง์ž„์„ X์—์„œ์˜ ์ž‘์€ ์›€์ง์ž„์œผ๋กœ ๋ณ€ํ™˜ํ•ด์ฃผ๋Š” ์„ ํ˜• ์‚ฌ์ƒ์ž…๋‹ˆ๋‹ค. ๊ณต์‹์ ์œผ๋กœ๋Š” \text{Ad}_X(\tau) = \frac{d}{d\epsilon}\big|_{\epsilon=0} X \circ \text{Exp}(\epsilon\tau)\circ X^{-1}๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ค๋ฌด์ ์œผ๋กœ ์ค‘์š”ํ•œ ํŠน์„ฑ์€, \text{Ad}_X๊ฐ€ ์ „์—ญ ์ ‘๊ณต๊ฐ„๊ณผ ๋กœ์ปฌ ์ ‘๊ณต๊ฐ„ ์‚ฌ์ด์˜ ์ขŒํ‘œ ๋ณ€ํ™˜ ํ–‰๋ ฌ์ด๋ผ๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์ „์—ญ vs ๋กœ์ปฌ perturbation ์ „ํ™˜์—์„œ \delta_X = \text{Ad}_X^{-1}\delta_E๋ผ๋Š” ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋˜ ๋ฐ”๋กœ ๊ทธ \text{Ad}๊ฐ€ ์—ฌ๊ธฐ์— ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค. \text{Ad}_X์˜ ๊ตฌ์ฒด์ ์ธ ํ˜•ํƒœ๋Š” Lie ๊ตฐ๋งˆ๋‹ค ๋‹ค๋ฅธ๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด SE(3) (3์ฐจ์› ๊ฐ•์ฒด ๋ณ€ํ™˜๊ตฐ)์˜ ๊ฒฝ์šฐ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

    \text{Ad}_{(R,t)} = \begin{pmatrix} R & -[t]_\times R \\ 0 & R \end{pmatrix} \in \mathbb{R}^{6\times6}

    ์—ฌ๊ธฐ์„œ X=(R,t)์€ ํšŒ์ „ R๊ณผ ๋ณ‘์ง„ t๋กœ ๊ตฌ์„ฑ๋œ SE(3) ์›์†Œ์ž…๋‹ˆ๋‹ค. ์ด ํ–‰๋ ฌ์€ SE(3)์˜ Lie ๋Œ€์ˆ˜ ์›์†Œ (\rho,\theta) (๋ณ‘์ง„ \rho, ํšŒ์ „ \theta)์— ์ž‘์šฉํ•˜์—ฌ, X ์ขŒํ‘œ๊ณ„์—์„œ ๋ณธ ์ƒˆ๋กœ์šด Lie ๋Œ€์ˆ˜ ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. Adjoint ํ–‰๋ ฌ์€ ๊ตฐ์˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•œ ๋ฏธ๋ถ„์„ ๋‹ค๋ฃฐ ๋•Œ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด Y = X\circ U์— ๋Œ€ํ•ด X ์ชฝ์˜ ๋ณ€ํ™” \delta X๊ฐ€ ์ถœ๋ ฅ Y์— ์ฃผ๋Š” ์˜ํ–ฅ์€ U์˜ Adjoint๋ฅผ ํ†ตํ•ด \delta Y = \delta X \circ U = \text{Ad}_U(\delta X)๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ U์˜ ๋ณ€ํ™”๋Š” \delta Y = X \circ \delta U = \text{Ad}_X(\delta U)๋กœ ๋‚˜ํƒ€๋‚˜์ฃ . ์ด์ฒ˜๋Ÿผ Adjoint๋Š” Lie ๊ตฐ์˜ ๊ณฑ์…ˆ ๊ตฌ์กฐ๋กœ ์ธํ•œ ๋ฏธ๋ถ„์  ์ƒํ˜ธ์ž‘์šฉ์„ ์„ ํ˜• ์—ฐ์‚ฐ์œผ๋กœ ์˜ฎ๊ฒจ์ฃผ๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

  • ์™ผ์ชฝ Jacobian J_l (๋ฐ ์˜ค๋ฅธ์ชฝ Jacobian J_r): ์ด๋Š” ํ”ํžˆ Lie ๋Œ€์ˆ˜์—์„œ Lie ๊ตฐ์œผ๋กœ์˜ ์ง€์ˆ˜ ๋งต ๋ฏธ๋ถ„์— ๋“ฑ์žฅํ•˜๋Š” ํ–‰๋ ฌ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด R = \text{Exp}(\theta) (SO(3)์—์„œ)๋ผ๊ณ  ํ•  ๋•Œ, \theta์˜ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ R์— ์ฃผ๋Š” ์˜ํ–ฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฏธ๋ถ„์ด ์™ผ์ชฝ Jacobian J_l(\theta)์ž…๋‹ˆ๋‹ค. Taylor ์ „๊ฐœ ๊ด€์ ์—์„œ \text{Exp}(\theta+\delta\theta) \approx \text{Exp}(\theta),J_l(\theta),\delta\theta๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SO(3)์˜ J_l(\theta)์— ๋Œ€ํ•œ ํํ˜•์‹ ํ•ด๋„ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฉฑ๊ธ‰์ˆ˜๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค:

    J_l(\theta) = I - \frac{1-\cos\|\theta\|}{\|\theta\|^2}[\theta]_\times + \frac{\|\theta\| - \sin\|\theta\|}{\|\theta\|^3}[\theta]_\times^2,

    ์ด๋Š” \theta๊ฐ€ 0์— ๊ฐ€๊นŒ์šธ ๋•Œ J_l(\theta) \to I๋กœ ์ˆ˜๋ ดํ•˜๋ฉฐ, ํšŒ์ „ ๊ฐ๋„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก J_l์ด ํŽธ์ฐจ์˜ ํฌ๊ธฐ๋ฅผ ๋ณด์ •ํ•ด์ฃผ๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅธ์ชฝ Jacobian J_r(\theta)๋Š” ์ด์™€ ์œ ์‚ฌํ•˜์ง€๋งŒ, \text{Exp}(\theta)R ๊ฐ™์€ ์˜ค๋ฅธ์ชฝ ๊ณฑ ์ƒํ™ฉ์˜ ๋ฏธ๋ถ„์— ๋‚˜ํƒ€๋‚˜๋Š” ํ–‰๋ ฌ์ž…๋‹ˆ๋‹ค. ์‚ฌ์‹ค J_r(\theta)์™€ J_l(\theta)๋Š” ์„œ๋กœ ์ „์น˜๊ด€๊ณ„(J_r(\theta) = J_l(-\theta))์— ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ Jacobian ํ–‰๋ ฌ์€ ๋ถˆํ™•์‹ค์„ฑ ์ „ํŒŒ์— ์ค‘์š”ํ•˜๊ฒŒ ํ™œ์šฉ๋˜๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด ๊ฐ๋„ ๊ณต๊ฐ„์˜ ๊ณต๋ถ„์‚ฐ์„ ํšŒ์ „ํ–‰๋ ฌ ๊ณต๊ฐ„์˜ ๊ณต๋ถ„์‚ฐ์œผ๋กœ ๋ณ€ํ™˜ํ•  ๋•Œ P_R = J_l(\theta),P_\theta,J_l(\theta)^\top์™€ ๊ฐ™์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์„ค๋ช…์— ๋”ฐ๋ฅด๋ฉด ๋Œ€๋ถ€๋ถ„์˜ ํŒŒ์ƒ๋œ Jacobian์€ ์˜ค๋ฅธ์ชฝ ๋ฏธ๋ถ„์— ๊ธฐ๋ฐ˜ํ•˜๊ณ , ํ•„์š”ํ•œ ๊ฒฝ์šฐ ์™ผ์ชฝ Jacobian๋„ ๋ณ„๋„๋กœ ์ œ๊ณตํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

์ •๋ฆฌํ•˜๋ฉด, Lie ๊ตฐ์—์„œ์˜ Jacobian ๊ณ„์‚ฐ์€ (1) ์šฐ์„  ๊ฐ ๊ฐœ๋ณ„ ์—ฐ์‚ฐ(Exp, Log, ๊ณฑ, ์—ญ ๋“ฑ)์˜ ๋ฏธ๋ถ„ ๊ณต์‹์„ ์•Œ๊ณ , (2) ์ฒด์ธ ๋ฃฐ์„ ์ ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ํ•จ์ˆ˜์˜ Jacobian์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ž์นซ ์ง์ ‘ ๋ฏธ๋ถ„ํ•˜๋ฉด ์‹ค์ˆ˜ํ•˜๊ธฐ ์‰ฌ์šด ๋ถ€๋ถ„๋“ค๋„ ๋ธ”๋ก ์กฐ๋ฆฝํ•˜๋“ฏ ์•ˆ์ „ํ•˜๊ฒŒ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Solร  ๋…ผ๋ฌธ ๋ถ€๋ก์—๋Š” ์ฃผ์š” Lie ๊ตฐ๋“ค์— ๋Œ€ํ•œ ๊ฑฐ์˜ ๋ชจ๋“  ํ•„์š”ํ•œ ๋ฏธ๋ถ„ ๊ณต์‹์ด ๋‚˜์—ด๋˜์–ด ์žˆ๋Š”๋ฐ, ์ด๋Š” ์‹ค๋ฌด์ž๊ฐ€ EKF๋‚˜ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•  ๋•Œ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, h(X) = X \cdot p (Pose X๊ฐ€ 3D ์  p์— ์ž‘์šฉ) ๊ฐ™์€ ๋‹จ์ˆœํ•œ ๊ฒฝ์šฐ๋ถ€ํ„ฐ IMU์˜ ๋ณต์žกํ•œ ์ƒํƒœ ์ฒœ์ด์— ์ด๋ฅด๊ธฐ๊นŒ์ง€, ๋ฏธ๋ฆฌ ์œ ๋„๋œ Jacobian๋“ค์„ ๋ชจ์•„๋‘๋ฉด ํ”„๋กœํ† ํƒ€์ดํ•‘ ์†๋„์™€ ์‹ ๋ขฐ์„ฑ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋ฉ๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ Manif ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์—๋Š” ์ด๋Ÿฌํ•œ Jacobian ๊ณ„์‚ฐ์ด ๋ชจ๋‘ ๊ตฌํ˜„๋˜์–ด ์žˆ์–ด, ์‚ฌ์šฉ์ž๊ฐ€ ์ผ์ผ์ด ๋ฏธ๋ถ„ ๊ณต์‹์„ ์œ ๋„ํ•  ํ•„์š” ์—†์ด ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœํ•ด ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ฐธ๊ณ ๋กœ, Jacobian์„ ์ˆ˜๊ธฐ๋กœ ์œ ๋„ํ•˜๋Š” ์ž‘์—…์€ ๋งค์šฐ ๋ฒˆ๊ฑฐ๋กญ๊ณ  ์˜ค๋ฅ˜๊ฐ€ ์žฆ๊ธฐ ๋•Œ๋ฌธ์—, ์ตœ๊ทผ์—๋Š” ์ž๋™ ๋ฏธ๋ถ„์ด๋‚˜ ์ˆ˜์น˜ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Lie ์ด๋ก ์„ ํ•œ ๋ฒˆ ์ตํ˜€ ๋‘๋ฉด, ์ž๋™ ๋ฏธ๋ถ„ ์—†์ด๋„ ๋ฌธ์ œ๋ฅผ ํ•ด์„์ ์œผ๋กœ ํ’€ ์ˆ˜ ์žˆ๊ณ  ๋ณด๋‹ค ๊นŠ์€ ์ดํ•ด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์ €์ž๋“ค๋„ โ€œLie ์ด๋ก ์„ ์“ฐ๋ฉด ๋น ๋ฅด๊ฒŒ ์ตœ์ข… Jacobian์„ ์–ป์„ ์ˆ˜ ์žˆ์ง€๋งŒ ์ˆ˜ํ•™์ด ๋งŽ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ฒด์ธ ๋ฃฐ์„ ์ง์ ‘ ์“ฐ๋Š” ํŽธ์ด ๋” ์‰ฌ์šธ ์ˆ˜๋„ ์žˆ๋‹คโ€๋Š” ์ทจ์ง€์˜ ์–ธ๊ธ‰์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ฒฐ๊ตญ ๊ฐœ๋ฐœ์ž๊ฐ€ ์„ ํ˜ธํ•˜๋Š” ๋ฐฉ์‹์— ๋‹ฌ๋ ธ์ง€๋งŒ, ์›๋ฆฌ๋ฅผ ์•Œ๊ณ  ์“ฐ๋Š” ๊ฒƒ๊ณผ ๋ชจ๋ฅด๊ณ  ์“ฐ๋Š” ๊ฒƒ์˜ ์ฐจ์ด๋Š” ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์—์„œ ๋“œ๋Ÿฌ๋‚  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

2.5 ์œ ํด๋ฆฌ๋“œ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ์™€์˜ ๋น„๊ต โ€“ ๋ฌด์—‡์ด ๋‹ค๋ฅด๊ณ  ์–ด๋–ค ์žฅ์ ์ด ์žˆ๋‚˜?

์ด์ œ Lie ์ด๋ก  ๊ธฐ๋ฐ˜์˜ ํ•„ํ„ฐ๊ฐ€ ๊ธฐ์กด์˜ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„ EKF ๋“ฑ๊ณผ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ง€, ๋˜ ์–ด๋–ค ์žฅ์ ์„ ๊ฐ–๋Š”์ง€ ์š”์•ฝํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์ฐจ์ด๋Š” ๋‹น์—ฐํžˆ ์ƒํƒœ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ํ•„ํ„ฐ์—์„œ๋Š” ์ƒํƒœ๋ฅผ ํ•˜๋‚˜์˜ ๋ฒกํ„ฐ๋กœ ๋ณด๊ณ  ๊ทธ ์œ„์—์„œ + ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋งŒ์•ฝ ์ƒํƒœ๊ฐ€ ๋ณธ์งˆ์ ์œผ๋กœ \mathbb{R}^n๊ฐ€ ์•„๋‹Œ ๊ณก๋ฉด(์˜ˆ: ํšŒ์ „)์€, ๊ธฐ์กด ๋ฐฉ์‹์€ ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ต๋‹ˆ๋‹ค. ์•„๋ž˜์— Lie ๊ตฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์˜ ์ฐจ๋ณ„์ ๊ณผ ์žฅ์ ์„ ์ •๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค.

  • ์ƒํƒœ ์ œ์•ฝ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์œ ์ง€: Lie ๊ตฐ ํ•„ํ„ฐ์—์„œ๋Š” ์ƒํƒœ ์—…๋ฐ์ดํŠธ๋ฅผ \oplus์™€ \text{Exp}๋กœ ์ˆ˜ํ–‰ํ•˜๋ฏ€๋กœ, ์ถ”์ •ํ•œ ์ƒํƒœ๊ฐ€ ํ•ญ์ƒ ์œ ํšจํ•œ ๊ตฐ ์›์†Œ๋กœ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฟผํ„ฐ๋‹ˆ์–ธ์„ ์‚ฌ์šฉํ•ด ์ž์„ธ๋ฅผ ๋‚˜ํƒ€๋‚ผ ๋•Œ, ๊ธฐ์กด EKF๋Š” ๋ณด์ •์‹œ ๋ฒกํ„ฐ์— \Delta q๋ฅผ ๋”ํ•œ ํ›„ ์žฌ๊ทœ๊ฒฉํ™”(normalize)ํ•ด์•ผ ํ•˜์ง€๋งŒ Lie EKF์—์„œ๋Š” q \leftarrow q \oplus \Delta q = q \cdot \text{Exp}(\Delta q)๋กœ ์—…๋ฐ์ดํŠธํ•จ์œผ๋กœ์จ ๋‹จ์œ„ ๋…ธ๋ฆ„ ์กฐ๊ฑด์ด ์ž๋™์œผ๋กœ ๋ณด์กด๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ตฌํ˜„์ƒ ์‹ค์ˆ˜๋ฅผ ์ค„์ด๊ณ , ์ˆ˜ํ•™์ ์œผ๋กœ๋„ ์ผ๊ด€์„ฑ(consistency)์„ ํ™•๋ณดํ•ด์ค๋‹ˆ๋‹ค.

  • ํฐ ํšŒ์ „/๋ณ€์œ„์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์„ ํ˜•ํ™”: ์œ ํด๋ฆฌ๋“œ ํ•„ํ„ฐ๋Š” ์ƒํƒœ๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•  ๊ฒฝ์šฐ ์„ ํ˜•ํ™” ์˜ค์ฐจ๊ฐ€ ์ปค์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด Lie ์ด๋ก ์„ ์‚ฌ์šฉํ•˜๋ฉด, ์˜ˆ๋ฅผ ๋“ค์–ด 90^\circ ํšŒ์ „๋„ ์ถ•-๊ฐ ๋ฒกํ„ฐ (\pi/2)๋กœ ์ •ํ™•ํžˆ ํ‘œํ˜„ํ•˜๊ณ  ์ง€์ˆ˜๋งต์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ€ํ™”๊ฐ€ ํด ๋•Œ๋„ ์˜ค์ฐจ๋ฅผ ์ ์ ˆํžˆ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์–ด ํ•„ํ„ฐ์˜ ์•ˆ์ •์„ฑ์ด ํ–ฅ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ ๋•๋ถ„์— SLAM/๋น„์ฃผ์–ผ-๊ด€์„ฑ ํ•ญ๋ฒ• ๋“ฑ์˜ ๋Œ€๊ทœ๋ชจ ๋ณ€ํ™˜์ด ์ˆ˜๋ฐ˜๋˜๋Š” ๋ฌธ์ œ์—์„œ ํ•„ํ„ฐ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜์—ˆ๋‹ค๋Š” ๋ณด๊ณ ๊ฐ€ ๋‹ค์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ํ†ตํ•ฉ์ ์ธ ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ: Lie ๊ตฐ์€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ์ƒํƒœ(์˜ˆ: 2D/3D ํšŒ์ „, ์œ„์น˜, ํ™•์žฅ๋œ ํฌ์ฆˆ ๋“ฑ)๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ก ์œผ๋กœ ์•„์šฐ๋ฆ…๋‹ˆ๋‹ค. ๊ธฐ์กด์—๋Š” ๊ฐ ๊ฒฝ์šฐ๋งˆ๋‹ค ์ขŒํ‘œ ํ‘œํ˜„์„ ๋‹ฌ๋ฆฌํ•˜๋ฉฐ EKF ๊ณต์‹์„ ์œ ๋„ํ•ด์•ผ ํ–ˆ์ง€๋งŒ, Lie ์ด๋ก ์„ ์ ์šฉํ•˜๋ฉด ํ•˜๋‚˜์˜ ํ†ต์ผ๋œ ํ‹€ ์•ˆ์—์„œ ๋ชจ๋“  ๊ฒฝ์šฐ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Solร  ๋…ผ๋ฌธ์ด ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์ฃผ์š” Lie ๊ตฐ์— ๋Œ€ํ•œ ๊ณตํ†ต๋œ ์—ฐ์‚ฐ ํ‘œ๊ธฐ์™€ ๊ณต์‹์ด ์žˆ์œผ๋ฏ€๋กœ ํ•™์Šต๊ณก์„ ๋„ ์™„๋งŒํ•ด์ง‘๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, SO(2), SO(3), SE(3), \mathbb{R}^n (ํŠธ๋ฆฌ๋น„์–ผ ๊ตฐ) ๋“ฑ์„ ๋ชจ๋‘ ๋™์ผํ•œ \oplus, \ominus ํ‘œ๊ธฐ๋กœ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ณ , ํ•„์š”ํ•œ Jacobian๋“ค๋„ ํ˜•ํƒœ๋Š” ์œ ์‚ฌํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

  • ์ฒด๊ณ„์ ์ธ ๋ถˆํ™•์‹ค์„ฑ ์ „ํŒŒ: Lie ๊ตฐ ๊ธฐ๋ฐ˜ ํ•„ํ„ฐ์—์„œ๋Š” ๊ณต๋ถ„์‚ฐ์ด ํ•ญ์ƒ ์ ‘๊ณต๊ฐ„ ์ƒ์— ์ •์˜๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ณก๋ฉด์˜ ๊ณก๋ฅ ์„ ์ง์ ‘ ๋‹ค๋ฃจ์ง€ ์•Š๊ณ ๋„ ๋ถˆํ™•์‹ค์„ฑ์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๋ฉฐ, ํ•„์š”ํ•  ๊ฒฝ์šฐ ์ ‘๊ณต๊ฐ„ ์ƒ์˜ ๊ฐ€์šฐ์‹œ์•ˆ์„ ๋‹ค์‹œ ๊ตฐ์ƒ์— ๋žฉํ•‘(wrapping)ํ•ด์„œ ํ•ด์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์•„๋ž˜ ๊ทธ๋ฆผ์—์„œ ๋นจ๊ฐ„ ํƒ€์›์€ ์ ‘๊ณต๊ฐ„์—์„œ์˜ ๊ณต๋ถ„์‚ฐ ๋“ฑ๊ณ ์„ ์ด๊ณ , ์ด๋ฅผ ์ง€์ˆ˜๋งต์œผ๋กœ ๊ณก๋ฉด์— ํˆฌ์˜ํ•˜๋ฉด ํŒŒ๋ž€ ๋ฆฌ๋ณธ ๋ชจ์–‘์œผ๋กœ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๊ฐํ™”๋Š” ๊ณก๋ฉด ์œ„์˜ ๋ถˆํ™•์‹ค์„ฑ ์˜์—ญ์„ ์ง๊ด€์ ์œผ๋กœ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์œ ํด๋ฆฌ๋“œ ํ•„ํ„ฐ์—์„œ๋Š” ์–ป๊ธฐ ์–ด๋ ค์šด ํ†ต์ฐฐ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, Adjoint์™€ left Jacobian ๋“ฑ์„ ์ด์šฉํ•ด ์ขŒํ‘œ๊ณ„ ๋ณ€ํ™˜์— ๋”ฐ๋ฅธ ๊ณต๋ถ„์‚ฐ ์ด์‹๋„ ์—„๋ฐ€ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ณต์žกํ•œ ๋กœ๋ด‡ ์„ผ์„œ ์œตํ•ฉ ์‹œ์Šคํ…œ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ํ‘œํ˜„ ์‚ฌ์ด์˜ ๋ถˆํ™•์‹ค์„ฑ ๋ณ€ํ™˜์„ ์ผ๊ด€๋˜๊ฒŒ ํ•ด์ฃผ๋Š” ์žฅ์ ์ž…๋‹ˆ๋‹ค.

  • ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ๋“ฌ๊ณผ์˜ ์œ ์‚ฌ์„ฑ (์‰ฌ์šด ์ด์‹์„ฑ): ์•ž์„œ ์„ค๋ช…ํ–ˆ๋“ฏ, Lie EKF์˜ ์ˆ˜์‹์€ ๊ธฐ์กด EKF์™€ ๊ฑฐ์˜ ๊ฐ™์€ ํ˜•ํƒœ๋ฅผ ๋ฑ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฏธ ์นผ๋งŒ ํ•„ํ„ฐ๋‚˜ ๊ทธ๋ž˜ํ”„ ์ตœ์ ํ™” ๋“ฑ์— ์ต์ˆ™ํ•œ ์‹ค๋ฌด์ž๋ผ๋ฉด ๊ธฐ์กด ์ฝ”๋“œ๋ฅผ ์•ฝ๊ฐ„ ์ˆ˜์ •ํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ Lie ๊ตฐ ๋ฒ„์ „์œผ๋กœ ์˜ฎ๊ธธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, Plus ์—ฐ์‚ฐ์„ ์ง€์›ํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ(์ฟผํ„ฐ๋‹ˆ์–ธ, ๋ณ€ํ™˜ํ–‰๋ ฌ ๋“ฑ)๋ฅผ ๋งŒ๋“ค๊ณ , ์นผ๋งŒ ํ•„ํ„ฐ์˜ ์—…๋ฐ์ดํŠธ ๋ถ€๋ถ„์—์„œ ๋ฒกํ„ฐ ํ•ฉ ๋Œ€์‹  \oplus๋ฅผ ํ˜ธ์ถœํ•˜๊ฒŒ ๋ฐ”๊พธ๋Š” ์ •๋„์˜ ์ˆ˜์ •์ด๋ฉด ๋ฉ๋‹ˆ๋‹ค. Solร  ๋“ฑ์€ โ€œLie ์ด๋ก ์„ ์ ์šฉํ•ด๋„ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ ๊ณต์‹์ด ๋ฒกํ„ฐ ๊ณต๊ฐ„์˜ ๊ฒฝ์šฐ์™€ ๊ฑฐ์˜ ๋‹ฎ์•„ ์žˆ๋‹คโ€๊ณ  ๊ฐ•์กฐํ•˜๋ฉฐ, ๋…์ž๋“ค์ด ๊ฑฐ๋ถ€๊ฐ ์—†์ด ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ํ™•์žฅํ•˜๋„๋ก ๋•๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

  • ์ด๋ก ์ ์œผ๋กœ ๊ฒ€์ฆ๋œ ์ •ํ™•์„ฑ: Lie ๊ตฐ ํ•„ํ„ฐ๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฏธ๋ถ„ ๊ธฐํ•˜ํ•™์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ์–ด, ํŠน์ด์ (singularity)์ด๋‚˜ ์ขŒํ‘œ๊ณ„ ์˜์กด์„ฑ ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ์ตœ์†Œํ™”๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ 3์ฐจ์› ํšŒ์ „ ๊ฐ™์ด ์ „ํ†ต์ ์œผ๋กœ ํŠน์ด์  ๋ฌธ์ œ๊ฐ€ ์žˆ๋˜ ๊ฒฝ์šฐ (์˜ˆ: ์˜ค์ผ๋Ÿฌ ๊ฐ์˜ ์ง๋ฒŒ๋ฝ ๋ฌธ์ œ)์—๋„ ๊ฐ•์ธํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์‹œ์Šคํ…œ ๋ชจ๋ธ์ด ์ขŒํ‘œ๊ณ„ ๋ณ€ํ™” ์•„๋ž˜ ๋ถˆ๋ณ€(invariant)์ธ ์„ฑ์งˆ์„ ์ด์šฉํ•˜๋ฉด, ํ•„ํ„ฐ์˜ ๊ตฌ์กฐ์ ์ธ ๊ฐ•๊ฑด์„ฑ์„ ๋†’์ด๋Š” Invariant-EKF์™€ ๊ฐ™์€ ๊ธฐ๋ฒ•๋„ ๋“ฑ์žฅํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๋ชจ๋‘ Lie ๊ตฐ ์ด๋ก ์˜ ์‚ฐ๋ฌผ์ž…๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ Lie ์ด๋ก  ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์€ ์ด๋ก ์ ์œผ๋กœ ๋ณด๋‹ค ์ฒ ์ €ํžˆ ๊ฒ€์ฆ๋˜์—ˆ๊ณ , ์ขŒํ‘œ ์„ ํƒ์— ๋œ ๋ฏผ๊ฐํ•œ ์ถ”์ •์„ ๊ฐ€๋Šฅ์ผ€ ํ•ฉ๋‹ˆ๋‹ค.

์ด์™€ ๊ฐ™์€ ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‹ค๋ฌด์ ์œผ๋กœ ๊ณ ๋ คํ•ด์•ผ ํ•  ์ ์€ ๊ตฌํ˜„์˜ ๋ณต์žก์„ฑ ์ฆ๊ฐ€์ž…๋‹ˆ๋‹ค. Lie ๊ตฐ์„ ๋‹ค๋ฃจ๋ ค๋ฉด ์ˆ˜์น˜์ ์œผ๋กœ Exp/Log๋ฅผ ๊ณ„์‚ฐํ•ด์•ผ ํ•˜๊ณ , Jacobian๋„ ์ƒˆ๋กญ๊ฒŒ ๊ตฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ดˆ๊ธฐ ๊ตฌํ˜„๋Ÿ‰์€ ๋‹ค์†Œ ๋Š˜์–ด๋‚  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•ž์„œ ์–ธ๊ธ‰ํ•œ manif ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋‚˜, ์ด๋ฏธ ์ž˜ ์•Œ๋ ค์ง„ Sophus, g2o ๋“ฑ์˜ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์ด๋Ÿฌํ•œ ๊ตฌํ˜„ ๋ถ€๋‹ด์€ ํฌ๊ฒŒ ์ค„์–ด๋“ญ๋‹ˆ๋‹ค. ๋ฌด์—‡๋ณด๋‹ค, ํ•œ ๋ฒˆ Lie ์ด๋ก ์„ ๋„์ž…ํ•ด๋‘๋ฉด ํ–ฅํ›„ ์ƒˆ๋กœ์šด ์ƒํƒœ ๋ณ€์ˆ˜๊ฐ€ ์ถ”๊ฐ€๋˜์–ด๋„ ๊ฐ™์€ ์›๋ฆฌ๋กœ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๊ณ , ์‹œ์Šคํ…œ ์ „๋ฐ˜์˜ ์ผ๊ด€์„ฑ ์œ ์ง€์™€ ๋””๋ฒ„๊น… ์šฉ์ด์„ฑ์ด ์ข‹์•„์ง€๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. Solร  ๋“ฑ์€ โ€œํ•„์š”์—†๋Š” ์ด๋ก ๊นŒ์ง€ ๋‹ค ๋™์›ํ•˜์ง€ ์•Š์•„๋„, ์šฐ๋ฆฌ์—๊ฒŒ ์œ ์šฉํ•œ ํ•ต์‹ฌ๋งŒ์œผ๋กœ๋„ ์ถฉ๋ถ„ํžˆ ์ •ํ™•ํ•œ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹คโ€๋Š” ๋ฉ”์‹œ์ง€๋ฅผ ์ „ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ณง ์‹ค์šฉ์„ฑ๊ณผ ์—„๋ฐ€ํ•จ์˜ ๊ท ํ˜•์„ ์˜๋ฏธํ•˜๋ฉฐ, ๋กœ๋ด‡๊ณตํ•™์ž๊ฐ€ Lie ์ด๋ก ์„ ํ•™์Šตํ•  ์ถฉ๋ถ„ํ•œ ์ด์œ ๊ฐ€ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

2.6 ๋งบ์œผ๋ฉฐ

์ง€๊ธˆ๊นŒ์ง€ โ€œA micro Lie theory for state estimation in roboticsโ€ ๋…ผ๋ฌธ์„ ๋”ฐ๋ผ๊ฐ€๋ฉฐ Lie ๊ตฐ/๋Œ€์ˆ˜์˜ ๊ธฐ๋ณธ๋ถ€ํ„ฐ ์ƒํƒœ ์ถ”์ •์—์˜ ์‘์šฉ๊นŒ์ง€ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด, Lie ๊ตฐ์ƒ์˜ ์นผ๋งŒ ํ•„ํ„ฐ๋Š” ์ƒํƒœ๋ฅผ ๋งค๋‹ˆํด๋“œ ์œ„์—์„œ ํ‘œํ˜„ํ•˜๊ณ , ์˜ค์ฐจ๋Š” ์ ‘๊ณต๊ฐ„์—์„œ ๊ฐ€์šฐ์‹œ์•ˆ์œผ๋กœ ์ถ”์ •ํ•˜๋ฉฐ, ์—…๋ฐ์ดํŠธ๋Š” \text{Exp}/\text{Log} ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋Š” ํ•ญ์ƒ ์œ ํšจํ•œ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์„ ํ˜•ํ™”์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๋ฉฐ, ๊ถ๊ทน์ ์œผ๋กœ ํ•„ํ„ฐ์˜ ์„ฑ๋Šฅ๊ณผ ์•ˆ์ •์„ฑ์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ ์ €์ž๋“ค์ด ๊ฐ•์กฐํ•˜๋“ฏ์ด, ๋กœ๋ด‡ ์ƒํƒœ ์ถ”์ •์—์„œ Lie ์ด๋ก ์˜ ์ผ๋ถ€๋ถ„๋งŒ ํ™œ์šฉํ•ด๋„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ด๋“์ด ๋งค์šฐ ํฌ๋‹ค๋Š” ๊ฒƒ์ด ํ˜„๋Œ€ ์‚ฌ๋ก€๋“ค๋กœ ์ฆ๋ช…๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋…์ž๊ป˜์„œ๋„ ์˜ค๋ž˜ ์žŠ๊ณ  ์žˆ๋˜ ์ด๋ก  ๊ฐ๊ฐ์„ ๋˜์‚ด๋ ค, ์‹ค์ œ ๋กœ๋ด‡ ๋ฌธ์ œ์— Lie ์ด๋ก ์„ ์ ์šฉํ•ด๋ณด๊ธธ ๊ถŒํ•ฉ๋‹ˆ๋‹ค. ์ž‘์€ Lie ์ด๋ก ์ด ๋ชจ์—ฌ ํฐ ๋ฐœ์ „์„ ์ด๋ฃจ๋“ฏ, ์—„๋ฐ€ํ•œ ์ˆ˜ํ•™์  ๋„๊ตฌ์˜ ํ˜„์žฅ ์ ์šฉ์ด ๋กœ๋ด‡๊ณตํ•™์˜ ๊ฒฌ๊ณ ํ•œ ๋ฐœ์ „์œผ๋กœ ์ด์–ด์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ฐธ๊ณ ๋ฌธํ—Œ: Joan Solร , Jรฉrรฉmie Deray, Dinesh Atchuthan, A micro Lie theory for state estimation in robotics, arXiv:1812.01537v9, 2021.

Copyright 2024, Jung Yeon Lee