Curieux.JY
  • Post
  • Note
  • Jung Yeon Lee

On this page

  • 1 Brief Review
  • 2 Detail Review
    • 2.1 ์†Œ๊ฐœ (๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์ )
    • 2.2 ๊ธฐ์ˆ ์  ๊ธฐ์—ฌ (ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜)
    • 2.3 ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ๋น„๊ต (DexFlow์˜ ์ฐจ๋ณ„์ )
    • 2.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„ (์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐ ์‹œ๊ฐํ™”)
      • 2.4.1 ์ •๋Ÿ‰์  ์ง€ํ‘œ ๋น„๊ต (Single-Frame ๊ธฐ์ค€ ์„ฑ๋Šฅ)
      • 2.4.2 ์‹œํ€€์Šค ๋ชจ์…˜ ํ’ˆ์งˆ ๋ฐ ๋™์ž‘ ์ž์—ฐ์Šค๋Ÿฌ์›€
    • 2.5 ๊ฒฐ๋ก  ๋ฐ ์‹œ์‚ฌ์ 

๐Ÿ“ƒDexFlow ๋ฆฌ๋ทฐ

retargeting
simulation
optimization
A Unified Approach for Dexterous Hand Pose Retargeting and Interaction
Published

August 8, 2025

IEEE/RSJ IROS 2025

  • Paper Link
  • Project Link
  1. ๐Ÿคธ ์ธ๊ฐ„ ์† ๋ชจ์…˜์„ ๋กœ๋ด‡ ์†์— ๋ฆฌํƒ€๊ฒŸํŒ…ํ•˜์—ฌ ์‚ฌ์‹ค์ ์ธ ์กฐ์ž‘ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•ด, ์ด ๋…ผ๋ฌธ์€ ์ •ํ™•๋„์™€ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐœ์„ ํ•˜๋Š” DexFlow ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
  2. ๐Ÿ› ๏ธ DexFlow๋Š” ์ „์—ญ ์ตœ์ ํ™”๋กœ ์ดˆ๊ธฐ ์ž์„ธ๋ฅผ ๋งž์ถ˜ ํ›„, ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ๋ฐ ์‹œ๊ฐ„ ์Šค๋ฌด๋”ฉ ๊ธฐ๋ฐ˜์˜ ์ ‘์ด‰ ๊ฐ์ง€, ๊ทธ๋ฆฌ๊ณ  ์ˆœ์ฐจ์  ์†๊ฐ€๋ฝ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์†-๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
  3. ๐Ÿ“Š ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŸํŒ… ๋ฐฉ์‹๋ณด๋‹ค ์ž์„ธ ์ •ํ™•๋„์™€ ์ž์—ฐ์Šค๋Ÿฌ์›€์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋ฉฐ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์…‹๊ณผ ํ•จ๊ป˜ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ๊ณผ ๋‹ค์–‘์„ฑ์„ ๊ฐ–์ถ˜ ๋กœ๋ด‡ ์กฐ์ž‘ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์— ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค.

1 Brief Review

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ์†์„ ์œ„ํ•œ ์‚ฌ์‹ค์ ์ธ ๋Šฅ์ˆ™ํ•œ ์กฐ์ž‘(dexterous manipulation) ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ์˜ ํ˜„์žฌ ํ•œ๊ณ„์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ†ตํ•ฉ ์ ‘๊ทผ ๋ฐฉ์‹์ธ DexFlow๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฆฌํƒ€๊ฒŸํŒ…(retargeting) ๋ฐฉ๋ฒ•๋“ค์€ ์ข…์ข… ์ •ํ™•๋„๊ฐ€ ๋‚ฎ๊ณ  ์†-๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ์ œ๋Œ€๋กœ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜์—ฌ ์ƒํ˜ธ๊ด€ํ†ต(interpenetration)๊ณผ ๊ฐ™์€ ์•„ํ‹ฐํŒฉํŠธ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฐ˜๋ฉด, ์ƒ์„ฑ ๋ชจ๋ธ(generative methods)๋“ค์€ ์ธ๊ฐ„ ์†์˜ ์‚ฌ์ „ ์ง€์‹(prior)์ด ๋ถ€์กฑํ•˜์—ฌ ์ œํ•œ์ ์ด๊ณ  ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด ํฌ์ฆˆ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ์— ์ง๋ฉดํ•ฉ๋‹ˆ๋‹ค. DexFlow๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ธ๊ฐ„ ์†๊ณผ ๊ฐ์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์—ฌ๋Ÿฌ ์†Œ์Šค์—์„œ ํ†ตํ•ฉํ•˜๋Š” ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ(temporal consistency)์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์ฐจ๋“ฑ ์†์‹ค ์ œ์•ฝ(differential loss constraint)์„ ์‚ฌ์šฉํ•˜๊ณ , ์†-๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ์„ ์ •๊ตํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ ‘์ด‰ ๋งต(contact maps)์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ํฌ์ฆˆ ์ •ํ™•๋„, ์ž์—ฐ์Šค๋Ÿฌ์›€ ๋ฐ ๋‹ค์–‘์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผœ ์†-๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๋ง์„ ์œ„ํ•œ ๊ฒฌ๊ณ ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ์—ฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ์ „์—ญ ํฌ์ฆˆ ํƒ์ƒ‰(global pose search)๊ณผ ์ง€์—ญ ์ ‘์ด‰ ์ •์ œ(local contact refinement)๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™”(hierarchical optimization) ์ ‘๊ทผ ๋ฐฉ์‹: ํ•ด๋ถ€ํ•™์  ์ •๋ ฌ ์ •ํ™•๋„์™€ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ(physical plausibility)์„ ๋™์‹œ์— ๋‹ค๋ฃจ๋Š” ์ƒˆ๋กœ์šด ์—๋„ˆ์ง€ ์ˆ˜์‹(energy formulations)์„ ํŠน์ง•์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
  • ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ๊ฐ์ง€(dual-threshold detection)์™€ ํ”„๋ ˆ์ž„ ๊ฐ„ ํ‰ํ™œํ™”(frame-to-frame smoothing) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํฌํ•จํ•˜๋Š” ์‹œ๊ฐ„ ์ธ์‹ ์ ‘์ด‰ ์ฒ˜๋ฆฌ ํŒŒ์ดํ”„๋ผ์ธ(temporal-aware contact processing pipeline): ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŸํŒ… ๋ฐฉ๋ฒ•์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ ‘์ด‰ ์ƒํƒœ ๋ณ€๋™์˜ 68%๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
  • ํฌ๋กœ์Šค-ํ•ธ๋“œ ํ† ํด๋กœ์ง€ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜(cross-hand topology migration)์„ ์ง€์›ํ•˜๋Š” 292K ํ”„๋ ˆ์ž„์˜ ๊ทธ๋žฉ(grasp)์„ ํฌํ•จํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ ํฌ๊ด„์ ์ธ ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŸํŒ… ์†”๋ฃจ์…˜์— ๋น„ํ•ด ์˜๋ฏธ์  ์„ฑ๊ณต๋ฅ (semantic success rate)์ด 7.5๋ฐฐ ํ–ฅ์ƒ๋˜์—ˆ์Œ์„ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค.

II. ๊ด€๋ จ ์—ฐ๊ตฌ

์ด ๋…ผ๋ฌธ์€ Vision-based teleoperation systems, ์ „ํ†ต์ ์ธ retargeting frameworks, task-oriented grasp synthesis, ๊ทธ๋ฆฌ๊ณ  grasps transfer์˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์ด ๊ฐ€์ง„ ํ•œ๊ณ„์ ์„ ๋ถ„์„ํ•˜๊ณ , ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ๋“ค์„ ์–ด๋–ป๊ฒŒ ๊ทน๋ณตํ•˜๋Š”์ง€์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด retargeting methods์˜ ์นจํˆฌ ์•„ํ‹ฐํŒฉํŠธ(penetration artifacts), ๋ถˆ์•ˆ์ •ํ•œ ์ ‘์ด‰(unstable contacts), ๊ทธ๋ฆฌ๊ณ  human motion priors์˜ ๋น„ํšจ์œจ์ ์ธ ํ™œ์šฉ ๋ฌธ์ œ๋ฅผ ์ง€์ ํ•˜๋ฉฐ, DexFlow๊ฐ€ ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ ํ†ตํ•ฉ์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๊ฒฉ์ฐจ๋ฅผ ํ•ด์†Œํ•œ๋‹ค๊ณ  ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

III. ๋ฐฉ๋ฒ•๋ก 

DexFlow ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์„ธ ๊ฐ€์ง€ ์—ฐ์†์ ์ธ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.

  • ๋จผ์ €, ๊ฐ์ฒด๋ฅผ ์ ์‘์ ์œผ๋กœ ์Šค์ผ€์ผ๋ง(scaling)ํ•˜๊ณ  MANO ์† ๋™์ž‘(hand motions)์„ ๋กœ๋ด‡ ๊ตฌ์„ฑ(robotic configurations)์œผ๋กœ ๋ฆฌํƒ€๊ฒŸํŒ…ํ•˜๋Š” ํ†ตํ•ฉ ์ „์ฒ˜๋ฆฌ(unified preprocessing)๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
  • ๋‹ค์Œ์œผ๋กœ, 2๋‹จ๊ณ„ ์ ‘์ด‰ ๊ฐ์ง€ ์‹œ์Šคํ…œ(two-stage contact detection system)์ด ๊ณต๊ฐ„ ์ž„๊ณ„๊ฐ’(spatial thresholds)๊ณผ ์‹œ๊ฐ„์  ํ‰ํ™œํ™”(temporal smoothing)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›„๋ณด ์ ‘์ด‰์ (candidate contact points)์„ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ผ์‹œ์ ์ธ ์•„ํ‹ฐํŒฉํŠธ(transient artifacts)๋ฅผ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
  • ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ›„์† ์†๊ฐ€๋ฝ ๊ด€์ ˆ ์ตœ์ ํ™”(finger joint optimization)๋Š” ์œ ํšจํ•œ ์ ‘์ด‰ ์ œ์•ฝ(effective contact constraints)์ด ์žˆ๋Š” ์†๊ฐ€๋ฝ๋งŒ ๊ณ ๋ คํ•˜๋ฉฐ, ์—„์ง€์†๊ฐ€๋ฝ๋ถ€ํ„ฐ ์ƒˆ๋ผ์†๊ฐ€๋ฝ๊นŒ์ง€ ๊ฐ ์†๊ฐ€๋ฝ์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์ตœ์ ํ™”ํ•˜์—ฌ ๋ณด๋‹ค ์ •๊ตํ•œ ์ ‘์ด‰ ์ตœ์ ํ™”๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

A. Hand Model Alignment

MANO ์† ๋ชจ๋ธ์˜ zero-pose ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ShadowHand ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ(robotic manipulator)์— ์ •๋ ฌํ•˜๊ธฐ ์œ„ํ•ด ๋ฆฌํƒ€๊ฒŸํŒ… ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ์ฒด ๋ชจ๋ธ๊ณผ MANO ์†์˜ ์„ ํ˜• ์น˜์ˆ˜(linear dimensions)๋ฅผ s = 10^9 ๊ณ„์ˆ˜๋กœ ์Šค์ผ€์ผ๋งํ•˜์—ฌ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๋กœ๋ด‡ ์† ์‚ฌ์ด์˜ ๊ฒน์นจ์„ ๊ฐœ์„ ํ•˜๊ณ , ShadowHand์˜ ์†๋ ์œ„์น˜(fingertip positions)๋ฅผ MANO ์†์— ๋” ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค.

B. Retargeting as an optimization problem

๋ฆฌํƒ€๊ฒŸํŒ… ๊ณผ์ •์˜ ํ•ต์‹ฌ์€ ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ด€์ ˆ ๊ฐ๋„(joint angles)๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ MANO ์†์—์„œ ์ถ”์ถœ๋œ ๋ชฉํ‘œ ํฌ์ฆˆ(target poses)์— ๋งž์ถ”๋Š” ์ „์—ญ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜ GN CRS2 LM์ž…๋‹ˆ๋‹ค.

์‹œ๊ฐ„ ๋‹จ๊ณ„ t์—์„œ ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ \mathbf{q}_t \in \mathbb{R}^n์ด๋ผ๊ณ  ํ•  ๋•Œ, ์—ฌ๊ธฐ์„œ n์€ ์ž์œ ๋„(DoF)์˜ ์ˆ˜์ž…๋‹ˆ๋‹ค. ๋ชฉ์  ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋ฉ๋‹ˆ๋‹ค.

\min_{\mathbf{q}_t \in \mathbb{R}^n} \sum_{i=0}^N \| \mathbf{v}_i^H (\boldsymbol{\theta}_t, \boldsymbol{\beta}_t, \mathbf{r}_t) - \mathbf{v}_i^R(\mathbf{q}_t) \|^2 + \alpha \| \mathbf{q}_t - \mathbf{q}_{t-1} \|^2 \quad (1)

์—ฌ๊ธฐ์„œ \mathbf{v}_i^H๋Š” MANO ๋ชจ๋ธ์˜ forward kinematics๋ฅผ ํ†ตํ•ด ๊ณ„์‚ฐ๋œ ์ธ๊ฐ„ ์†์˜ Task-Space Vector (TSV)๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, \mathbf{v}_i^R์€ ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ TSV์ž…๋‹ˆ๋‹ค. \alpha๋Š” ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ(temporal consistency)์„ ๋ณด์žฅํ•˜๋Š” ์ •๊ทœํ™” ๊ฐ€์ค‘์น˜(regularization weight)์ด๋ฉฐ, N์€ ์ตœ์ ํ™”์—์„œ ๊ณ ๋ ค๋˜๋Š” TSV์˜ ์ˆ˜์ž…๋‹ˆ๋‹ค(N=13). ์ฒซ ๋ฒˆ์งธ ํ•ญ์€ ๋กœ๋ด‡ ์†์˜ ํฌ์ฆˆ๊ฐ€ Task Space์—์„œ ์ธ๊ฐ„ ์†๊ณผ ์ •๋ ฌ๋˜๋„๋ก ๋ณด์žฅํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ํ•ญ์€ ํ”„๋ ˆ์ž„ ๊ฐ„์˜ ์‹œ๊ฐ„์  ํ‰ํ™œ์„ฑ์„ ๊ฐ•ํ™”ํ•ฉ๋‹ˆ๋‹ค.

ํ”„๋ ˆ์ž„ ๊ฐ„์˜ ๊ธ‰๊ฒฉํ•œ ๊ด€์ ˆ ๊ฐ๋„ ๋ณ€ํ™”๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฐจ๋“ฑ ์†์‹ค(differential loss) ์ œ์•ฝ ์กฐ๊ฑด์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค.

L_{temp} = \lambda_T \sum_{t=2}^T \| \mathbf{q}_t - 2\mathbf{q}_{t-1} + \mathbf{q}_{t-2} \|_{\Sigma^{-1}}^2 \quad (2)

์—ฌ๊ธฐ์„œ \Sigma \in \mathbb{R}^{28 \times 28}๋Š” ๊ด€์ ˆ ์šด๋™ ๋ถˆํ™•์‹ค์„ฑ(joint motion uncertainty)์„ ๋‚˜ํƒ€๋‚ด๋Š” ์šด๋™ํ•™์  ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ(kinematic covariance matrix)์ด๊ณ , \mathbf{q}_t, \mathbf{q}_{t-1}, \mathbf{q}_{t-2}๋Š” ํ˜„์žฌ, ์ด์ „, ๋‘ ๋‹จ๊ณ„ ์ „ ํ”„๋ ˆ์ž„์˜ ๊ด€์ ˆ ๊ฐ๋„์ด๋ฉฐ, \lambda = 0.1์€ ์ฐจ๋“ฑ ์†์‹ค์— ๋Œ€ํ•œ ๊ฐ€์ค‘์น˜์ž…๋‹ˆ๋‹ค.

์ตœ์ ํ™” ์ค‘์—๋Š” ํ˜„์žฌ ํ”„๋ ˆ์ž„ ์ƒํƒœ \mathbf{q}_t์™€ ๊ณผ๊ฑฐ ์œˆ๋„์šฐ W_t = \{\mathbf{q}_{t-k}, \ldots, \mathbf{q}_t\}๋ฅผ ๊ณต๋™์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ(sliding window) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ข… ์ตœ์ ํ™” ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\mathbf{q}^*_t = \arg \min_{\mathbf{q}_t} L_{align} + L_{temp} + \gamma \| \mathbf{q}_t - \mathbf{q}^{pred}_t \|^2 \quad (3)

์—ฌ๊ธฐ์„œ L_{align}์€ ์ž‘์—… ๊ฐ„ ์ •๋ ฌ ์†์‹ค์„ ๋‚˜ํƒ€๋‚ด๊ณ , \mathbf{q}^{pred}_t = \mathbf{q}_{t-1} + \Delta t \dot{\mathbf{q}}_{t-1}์€ ์ด์ „ ํ”„๋ ˆ์ž„์˜ ์†๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์˜ˆ์ธก๋œ ๊ด€์ ˆ ๊ฐ๋„์ด๋ฉฐ, \gamma = 0.5๋Š” ์šด๋™ ์—ฐ์†์„ฑ(motion continuity)์„ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋™์  ํ‰ํ™œํ™” ๊ฐ€์ค‘์น˜(dynamic smoothing weight)์ž…๋‹ˆ๋‹ค. ์ด ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์ƒ์„ฑ๋œ ์šด๋™ ๊ถค์ (motion trajectory)์ด ํ—ค์‹œ์•ˆ ํ–‰๋ ฌ(Hessian matrix)์˜ ์ •๊ทœํ™”(regularization)๋ฅผ ํ†ตํ•ด C^2 ์—ฐ์†์„ฑ(continuity)์„ ๋งŒ์กฑํ•˜๋„๋ก ๋ณด์žฅํ•˜์—ฌ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

C. Contact map

๋ฆฌํƒ€๊ฒŸํŒ… ํ›„, ๋กœ๋ด‡ ์† ๊ด€์ ˆ ๊ฐ๋„ ์‹œํ€€์Šค๋Š” ์ธ๊ฐ„ ์† ๋™์ž‘ ์‹œํ€€์Šค์™€ ์ •๋ ฌ๋ฉ๋‹ˆ๋‹ค. ๊ฐ์ฒด์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ์œ„ํ•œ ๋ณด๋‹ค ์‚ฌ์‹ค์ ์ธ ๊ด€์ ˆ ๊ตฌ์„ฑ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ์ถ”๊ฐ€๋กœ ์ •์ œํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์†๊ณผ ๊ฐ์ฒด ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•ด ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ์•Œ๊ณ ๋ฆฌ์ฆ˜(dual-threshold algorithm)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ ‘์ด‰ ๋งต์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. ์ด ๋งต์€ ์ ‘์ด‰ ์ƒํƒœ๋กœ ํŒ๋‹จ๋œ ์† ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ(hand point cloud)์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๊ฐ์ฒด ๋ฉ”์‰ฌ ์ •์ (object mesh vertices) ๊ฐ„์˜ ๋Œ€์‘(correspondence)์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ, ์ ‘์ด‰ ์ƒํƒœ์˜ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋ ˆ์ž„ ๊ฐ„ ํ‰ํ™œํ™”(frame-to-frame smoothing)๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค.

  1. Dual-Threshold Contact Information Extraction: ๋กœ๋ด‡์˜ ๋ชฉํ‘œ ์œ„์น˜(\mathbf{q}_t)๋ฅผ ๋งคํ•‘ํ•œ ํ›„, ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ ‘์ด‰ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ์†๋(fingertip)์— ๋Œ€ํ•ด ์†๋๊ณผ ๊ฐ์ฒด ํ‘œ๋ฉด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ๊ฑฐ๋ฆฌ๊ฐ€ ํ•˜ํ•œ ์ž„๊ณ„๊ฐ’(dis_{min})๋ณด๋‹ค ์ž‘์œผ๋ฉด ์†๋์ด ์ ‘์ด‰ ์ƒํƒœ๋กœ ๊ฐ„์ฃผ๋˜๊ณ , ์ƒํ•œ ์ž„๊ณ„๊ฐ’(dis_{max})๋ณด๋‹ค ํฌ๋ฉด ์ ‘์ด‰ ์ƒํƒœ๊ฐ€ ์•„๋‹Œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผ๋ฉ๋‹ˆ๋‹ค. ๊ฑฐ๋ฆฌ๊ฐ€ ๋‘ ์ž„๊ณ„๊ฐ’ ์‚ฌ์ด์— ์žˆ์œผ๋ฉด ์†๋์˜ ์ ‘์ด‰ ์ƒํƒœ๋Š” ์ด์ „ ํ”„๋ ˆ์ž„๊ณผ ๋™์ผํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค.
  2. Frame-to-Frame Contact Inference: ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ์„ค์ •์€ ์ ‘์ด‰ ์ƒํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํฌ์ฐฉํ•˜๋Š” ๊ฒƒ๊ณผ ์›๋ž˜ ๋™์ž‘์˜ ์˜๋ฏธ๋ก ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ ์‚ฌ์ด์˜ ์ ˆ์ถฉ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋…ธ์ด์ฆˆ(noisy fluctuations)๋กœ ์ธํ•œ ์ค‘๊ฐ„ ํ”„๋ ˆ์ž„์˜ ์ ‘์ด‰ ์ •๋ณด ์ง€ํ„ฐ(jitter) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์šด๋™ํ•™์  ์ œ์•ฝ(kinematic constraints)์„ ํ†ตํ•ฉํ•œ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ ์ธ์‹ ๋ณด๊ฐ„ ๋ฉ”์ปค๋‹ˆ์ฆ˜(temporal coherence-aware interpolation mechanism)์„ ๊ฐœ๋ฐœํ•ฉ๋‹ˆ๋‹ค.

C_t = I \left( \frac{\|C_{t-1} + C_{t+1}\|^2}{2} + \alpha v_f \Delta t > \tau_c \right) \quad (4) ์—ฌ๊ธฐ์„œ I(\cdot)๋Š” ์ง€์‹œ ํ•จ์ˆ˜(indicator function)์ด๊ณ , \alpha=0.6์€ ์†๋„ ์˜ํ–ฅ(velocity influence)์„ ์กฐ์ ˆํ•˜๋ฉฐ, \tau_c=0.7์€ ์ ‘์ด‰ ์‹ ๋ขฐ๋„ ์ž„๊ณ„๊ฐ’(contact confidence threshold)์ž…๋‹ˆ๋‹ค. ์†๋„ ํ•ญ v_f \Delta t๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ”„๋ ˆ์ž„ ๊ฐ„ ์†๊ฐ€๋ฝ ๋ณ€์œ„(finger displacement)๋ฅผ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค. \Delta x = \int_{t-1}^{t+1} v_f(t) dt \approx \frac{1}{2} (v_{t-1} + v_{t+1}) \Delta t \quad (5)

์„ธ ๋‹จ๊ณ„์˜ ๊ฒฐ์ • ํ”„๋กœํ† ์ฝœ์€ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ์„ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.

  • Motion Continuity Check: 5 ํ”„๋ ˆ์ž„ ์œˆ๋„์šฐ(t-2, \ldots, t+2) ์œ„์น˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 3์ฐจ ์Šคํ”Œ๋ผ์ธ ๊ถค์ (cubic spline trajectory) T๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. T(u) = \sum_{i=0}^3 a_i (u - u_{t-2})^i, \quad u \in [t-2, t+2] \quad (6)
  • Contact Likelihood Estimation: ๊ฐ€์†๋„(\ddot{T})๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ ‘์ด‰ ๊ฐ€๋Šฅ์„ฑ(P_c(t))์„ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค. P_c(t) = \sigma (\beta_1 (\ddot{T}(t) - \ddot{T}_{object}(t))) \quad (7) ์—ฌ๊ธฐ์„œ \sigma(\cdot)๋Š” ์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜(sigmoid function)์ž…๋‹ˆ๋‹ค.
  • State Imputation: ์ตœ์ข… ์ ‘์ด‰ ์ƒํƒœ C^{final}_t๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. C^{final}_t = \begin{cases} C^{interp}_t, & \text{if } P_c(t) > 0.5 \land \nabla T(t) < v_{max} \\ C^{raw}_t, & \text{otherwise} \end{cases} \quad (8)

D. Third Stage Optimization

์ด ๋‹จ๊ณ„์—์„œ๋Š” ๊ทธ๋žฉ ์ •ํ™•๋„(grasping accuracy)์™€ ์•ˆ์ •์„ฑ(stability)์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์† ํฌ์ฆˆ, ํŠนํžˆ ์†๊ฐ€๋ฝ ์ˆ˜์ค€์—์„œ์˜ ์ตœ์ ํ™”์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ์ตœ์ ํ™” ๊ณผ์ •์€ ๊ฐ ์†๊ฐ€๋ฝ์— ๋Œ€ํ•œ ๊ฐœ๋ณ„ ์ตœ์ ํ™”๋กœ ๋‚˜๋‰˜์–ด ์ ‘์ด‰์ ๊ณผ ์† ํฌ์ฆˆ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  1. Sequential Finger Ordering Prior to Optimization: ์ตœ์ ํ™” ์‹œ์ž‘ ์ „์— ๊ฐœ๋ณ„ ์†๊ฐ€๋ฝ์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์‚ฌ์ „ ์ •์˜๋œ ์ˆœ์„œ(์—„์ง€๋ถ€ํ„ฐ ์ƒˆ๋ผ์†๊ฐ€๋ฝ๊นŒ์ง€)๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ตœ์ ํ™” ๋™์ž‘ ๊ณต๊ฐ„์„ ์ค„์ด๊ณ (reducing the optimization action space), ์ฃผ์š” ๊ธฐ๋Šฅ ์†๊ฐ€๋ฝ(primary functional fingers)์ด ์ถฉ๋Œ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๋ถ€์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ณ€ํ˜•๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  2. Optimization Process: ์ตœ์ ํ™”๋Š” ๊ฐ ์†๊ฐ€๋ฝ์˜ ์† ํฌ์ฆˆ๋ฅผ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. ์ดˆ๊ธฐ ์† ํฌ์ฆˆ(initial hand pose)์—์„œ ๊ฐ ์†๊ฐ€๋ฝ์˜ ์ ‘์ด‰์ (contact points)์ด ์ •์˜๋˜๋ฉฐ, ๋ชฉํ‘œ๋Š” ์ด๋Ÿฌํ•œ ์ ‘์ด‰์ ๊ณผ ๊ด€๋ จ๋œ ์—๋„ˆ์ง€๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์†์˜ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ๋ฒ”์œ„ ๋‚ด๋กœ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ตœ์ ํ™” ๊ณผ์ •์€ ๋‹ค์Œ ํ•ญ๋“ค์„ ํฌํ•จํ•˜๋Š” ๊ฐ€์ค‘์น˜ ์—๋„ˆ์ง€ ํ•จ์ˆ˜(weighted energy function)๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • Distance Energy (E_{dis}): ์†์˜ ์ ‘์ด‰์ ๊ณผ ๊ฐ์ฒด ํ‘œ๋ฉด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ ์ ˆํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์ด ๊ฑฐ๋ฆฌ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. E_{dis} = \sum_{i=1}^n \| \mathbf{p}_i - \mathbf{o}_i \|^2 \quad (9) ์—ฌ๊ธฐ์„œ \mathbf{p}_i๋Š” ์†์˜ ์ ‘์ด‰์ ์ด๊ณ  \mathbf{o}_i๋Š” ๊ฐ์ฒด์˜ ํ•ด๋‹น ์ ์ž…๋‹ˆ๋‹ค.

  • Penetration Energy (E_{pen}): ์†์ด ๊ฐ์ฒด๋ฅผ ๊ด€ํ†ตํ•˜๋Š” ๊ฒฝ์šฐ์— ๋ถˆ์ด์ต์„ ์ค๋‹ˆ๋‹ค. E_{pen} = \sum_{i=1}^n \max(0, \delta_i - d_i)^2 \quad (10) ์—ฌ๊ธฐ์„œ \delta_i๋Š” ๊ฐ์ฒด์—์„œ ์†๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  d_i๋Š” ๊ด€ํ†ต ๊นŠ์ด(penetration depth)์ž…๋‹ˆ๋‹ค.

  • Alignment Energy (E_{align}): ์†์˜ ์ ‘์ด‰์ ์ด ๊ฐ์ฒด์˜ ํ‘œ๋ฉด ๋ฒ•์„  ๋ฒกํ„ฐ(surface normal vectors)์™€ ์ •๋ ฌ๋˜๋„๋ก ์žฅ๋ คํ•˜์—ฌ ๊ทธ๋žฉ์ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํƒ€๋‹นํ•˜๋„๋ก ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. E_{align} = \sum_{i=1}^n (1 - \mathbf{n}_i \cdot \mathbf{n}^O_i)^2 \quad (11) ์—ฌ๊ธฐ์„œ \mathbf{n}_i๋Š” ์†์˜ i-๋ฒˆ์งธ ์ ‘์ด‰์ ์—์„œ์˜ ๋ฒ•์„  ๋ฒกํ„ฐ์ด๊ณ , \mathbf{n}^O_i๋Š” ๊ฐ์ฒด์˜ ํ•ด๋‹น ์ ‘์ด‰์ ์—์„œ์˜ ๋ฒ•์„  ๋ฒกํ„ฐ์ž…๋‹ˆ๋‹ค.

  • Self-Penetration Energy (E_{spen}): ์†๊ฐ€๋ฝ์ด๋‚˜ ์†๋ฐ”๋‹ฅ์ด ์„œ๋กœ ์ถฉ๋Œํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜์—ฌ ์ ์ ˆํ•œ ๋ถ„๋ฆฌ(separation)๋ฅผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค. E_{spen} = \sum_{p \in P_c} \sum_{q \in P_o} \max(\delta - d(p, q), 0) \quad (12) ์—ฌ๊ธฐ์„œ P_c๋Š” ํ˜„์žฌ ์ตœ์ ํ™”๋œ ์†๊ฐ€๋ฝ์˜ ์  ์ง‘ํ•ฉ์„ ๋‚˜ํƒ€๋‚ด๊ณ , P_o๋Š” ๋‚˜๋จธ์ง€ ์†๊ฐ€๋ฝ์˜ ์  ์ง‘ํ•ฉ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. d(p, q)๋Š” ํ˜„์žฌ ์†๊ฐ€๋ฝ์˜ ์  p์™€ ๋‹ค๋ฅธ ์†๊ฐ€๋ฝ์˜ ์  q ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜๋ฉฐ, \delta๋Š” ์ถฉ๋Œ ํŒจ๋„ํ‹ฐ๊ฐ€ ์ ์šฉ๋˜๋Š” ์ž„๊ณ„ ๊ฑฐ๋ฆฌ์ž…๋‹ˆ๋‹ค.

  • Regularization Energy (E_{joints}): ์ด ํ•ญ์€ ์ดˆ๊ธฐ ์† ํฌ์ฆˆ๋กœ๋ถ€ํ„ฐ์˜ ํฐ ํŽธ์ฐจ์— ๋ถˆ์ด์ต์„ ์ฃผ์–ด ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ตฌ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค. E_{joints} = \sum_{i=1}^d \| \theta_i - \theta_{init,i} \|^2 \quad (13) ์—ฌ๊ธฐ์„œ \theta_i๋Š” ํ˜„์žฌ ๊ด€์ ˆ ๊ฐ๋„์ด๊ณ , \theta_{init,i}๋Š” ์ดˆ๊ธฐ ๊ด€์ ˆ ๊ฐ๋„์ž…๋‹ˆ๋‹ค.

์ด ์—๋„ˆ์ง€๋Š” ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ ์š”์†Œ๋“ค์˜ ๊ฐ€์ค‘ ํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. E_{total} = E_{dis} + w_{pen}E_{pen} + w_{align}E_{align} + w_{spen}E_{spen} + w_{joints}E_{joints} \quad (14) ์—ฌ๊ธฐ์„œ w_{pen}, w_{align}, w_{spen}, w_{joints}๋Š” ๊ฐ ์—๋„ˆ์ง€ ํ•ญ์˜ ์ค‘์š”๋„๋ฅผ ์ œ์–ดํ•˜๋Š” ๊ฐ€์ค‘์น˜์ž…๋‹ˆ๋‹ค.

IV. ์‹คํ—˜ ๊ฒฐ๊ณผ

์‹คํ—˜์€ Intel Core i9-13900HK CPU, 32GB RAM, NVIDIA GeForce RTX 4080 GPU๋ฅผ ๊ฐ–์ถ˜ Linux ์‹œ์Šคํ…œ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐœ์„ ๋œ ์ตœ์ ํ™” ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ MANO ์† ๋™์ž‘ ์บก์ฒ˜(motion capture) ๋ฐ์ดํ„ฐ๋ฅผ ShadowHand/Allegro ๋กœ๋ด‡์— ๋ฆฌํƒ€๊ฒŸํŒ…ํ•˜์—ฌ ๋‹ค์ค‘ ๋ชจ๋“œ ๊ทธ๋žฉ ์‹œํ€€์Šค(multi-modal grasp sequences)๋ฅผ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. 50๊ฐœ์˜ YCB ๊ฐ์ฒด์— ๋Œ€ํ•ด 292k ํ”„๋ ˆ์ž„์˜ ์ตœ์ ํ™”๋œ ๊ทธ๋žฉ ๊ถค์ (grasp trajectories)์ด ์ƒ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์•ˆ์ •์ ์ธ ๊ทธ๋žฉ(stable grasping), ๋™์  ์กฐ์ •(dynamic adjustments), ๋‹ค์ค‘ ์†๊ฐ€๋ฝ ํ˜‘์—…(multi-finger collaborative operations)๊ณผ ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋™์ผํ•œ ์ธ๊ฐ„ ์† ๋™์ž‘์„ ๋‹ค๋ฅธ ๋กœ๋ด‡ ์† ๊ตฌ์กฐ์— ๋งคํ•‘ํ•˜์—ฌ ์˜๋ฏธ๋ก ์  ๊ทธ๋žฉ ์˜๋„(semantic grasping intentions)๋ฅผ ๋ณด์กดํ•˜๋Š” ํฌ๋กœ์Šค-ํ•ธ๋“œ ํ† ํด๋กœ์ง€ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜(cross-hand topology migration)์ด ์ง€์›๋ฉ๋‹ˆ๋‹ค.

Single-Frame Data Quality Evaluation

Isaac Gym [27]๊ณผ PhysX๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋žฉ์˜ ์„ฑ๊ณต ์—ฌ๋ถ€๋Š” ๊ทธ๋ฆฌํผ(gripper)๊ฐ€ ๊ฐ์ฒด์™€ 100 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‹จ๊ณ„ ๋™์•ˆ ์ค‘๋ ฅ์ด ์ ์šฉ๋˜๋Š” ๋ชจ๋“  6์ถ• ์ •๋ ฌ ๋ฐฉํ–ฅ(axis-aligned directions)์—์„œ ์ ‘์ด‰์„ ์œ ์ง€ํ•˜๋Š” ๊ฒฝ์šฐ ์„ฑ๊ณต์œผ๋กœ ๊ฐ„์ฃผ๋ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ๋ถ„์„์  ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ, DexFlow๋Š” ์ ‘์ด‰ ํ’ˆ์งˆ์—์„œ ๋‘ ๋ฒˆ์งธ๋กœ ๋‚ฎ์€ Contact Distance๋ฅผ ๋‹ฌ์„ฑํ–ˆ์œผ๋ฉฐ, DexGraspNet ๋ฐ SpringGrasp์— ๋น„ํ•ด ํ•œ ์ž๋ฆฟ์ˆ˜ ํ–ฅ์ƒ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ ๋ถ„์„์—์„œ๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์— ๋น„ํ•ด Penetration์„ ํฌ๊ฒŒ ์ค„์˜€์Šต๋‹ˆ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ•์€ 40.32%์˜ Semantic Success Rate (SSR)๋ฅผ ๋‹ฌ์„ฑํ•˜์—ฌ ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŸํŒ… ๋ฐฉ๋ฒ•์ธ DexRetarget์˜ 5.35%๋ณด๋‹ค 7.5๋ฐฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.

Trajectory Motion Quality Analysis

๊ถค์  ํ‰๊ฐ€์—๋Š” ์‹œ๊ฐ„ ์ •๋ ฌ๋œ Chamfer Distance (CD)๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. CD = \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{p} \in P^{ref}_t, \mathbf{q} \in P^{gen}_t} \| \mathbf{p} - \mathbf{q} \|^2 \quad (15) ์—ฌ๊ธฐ์„œ P^{ref}_t์™€ P^{gen}_t๋Š” ๊ฐ๊ฐ ์‹œ๊ฐ„ ๋‹จ๊ณ„ t์—์„œ์˜ ์ฐธ์กฐ ๋ฐ ์ƒ์„ฑ๋œ ๊ฐ์ฒด ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์ž…๋‹ˆ๋‹ค. ๋ฆฌํƒ€๊ฒŸํŒ… ๋‹จ๊ณ„์—์„œ 0.008 CD๋ฅผ ๋‹ฌ์„ฑํ•˜์—ฌ DexRetarget์˜ 0.016๋ณด๋‹ค 50% ๋‚ฎ์€ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ๋›ฐ์–ด๋‚œ ์‹œ๊ฐ„์  ํ˜•์ƒ ์ผ๊ด€์„ฑ(temporal shape consistency)์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ดํ›„ ์ตœ์ ํ™”์—์„œ๋„ ์ด ์žฅ์ (0.009 CD)์ด ์œ ์ง€๋˜๋ฉด์„œ ๊ด€ํ†ต(penetrations) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์—ฌ, ๊ธฐํ•˜ํ•™์  ์ถฉ์‹ค๋„(geometric fidelity)์™€ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ์„ ๋™์‹œ์— ๋ณด์กดํ•˜๋Š” ์ด์ค‘ ๊ธฐ๋Šฅ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค. 0.48์˜ Velocity KL Divergence (DexRetarget ๋Œ€๋น„ 11% ํ–ฅ์ƒ)๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ๋ณด์กด์„ ํ™•์ธ์‹œ์ผœ์ฃผ๋ฉฐ, ํ†ต์ œ๋œ ๊ฐ€์†๋„ ์ฆ๊ฐ€(0.073์—์„œ 0.080 RMS)๋Š” ํ•„์š”ํ•œ ์ ‘์ด‰ ๋ณด์ •(contact corrections)์„ ๋ฐ˜์˜ํ•ฉ๋‹ˆ๋‹ค.

V. ๊ฒฐ๋ก 

์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋กœ๋ด‡ ๊ทธ๋žฉ ๋ฐ ์กฐ์ž‘์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ํ™•๋ฆฝํ•˜์—ฌ ๋ฆฌํƒ€๊ฒŸํŒ…์„ ํ†ตํ•ด ๋กœ๋ด‡ ๊ทธ๋žฉ ๋ฐ์ดํ„ฐ ํš๋“์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ๋‹จ์ผ ํ”„๋ ˆ์ž„(single-frame) ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์ด ์•„์ง ์ผ๋ถ€ ๊ธฐ์กด ๋ฐฉ๋ฒ•์„ ๋Šฅ๊ฐ€ํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋ชจ๋“  ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๊ทธ๋žฉ ์„ฑ๊ณต์ด ์™„์ „ํžˆ ๋ณด์žฅ๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ณธ ์ ‘๊ทผ ๋ฐฉ์‹์€ ํ•ต์‹ฌ ์ง€ํ‘œ์—์„œ ์ตœ์ฒจ๋‹จ ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ•  ์ˆ˜ ์žˆ๋Š” ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‚˜์•„๊ฐ€, ๋ณต์žกํ•œ ์†-๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ ์ž‘์—…์—์„œ ๋” ๋†’์€ ์ •๋ฐ€๋„, ์ž์—ฐ์Šค๋Ÿฌ์›€ ๋ฐ ๋‹ค์–‘์„ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์–ป์€ ํ†ต์ฐฐ๋ ฅ๊ณผ ๋ฐ์ดํ„ฐ๋Š” ๋กœ๋ด‡ ๊ทธ๋žฉ ๋ฐ ๋Šฅ์ˆ™ํ•œ ์กฐ์ž‘์˜ ๋ฏธ๋ž˜ ๋ฐœ์ „์„ ์œ„ํ•œ ๊ท€์ค‘ํ•œ ์ฐธ๊ณ  ์ž๋ฃŒ๊ฐ€ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.


2 Detail Review

DexFlow: ์„ฌ์„ธํ•œ ์† ํฌ์ฆˆ ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฐ ์ƒํ˜ธ์ž‘์šฉ์„ ์œ„ํ•œ ํ†ตํ•ฉ ์ ‘๊ทผ๋ฒ• (๋…ผ๋ฌธ ์‹ฌ์ธต ๋ฆฌ๋ทฐ)

2.1 ์†Œ๊ฐœ (๋ฐฐ๊ฒฝ ๋ฐ ๋ฌธ์ œ์ )

๋กœ๋ด‡์˜ ์„ฌ์„ธํ•œ ์† ๋™์ž‘ ์กฐ์ž‘(dexterous manipulation)์„ ์œ„ํ•ด ์ธ๊ฐ„ ์†์˜ ๋™์ž‘์„ ๋กœ๋ด‡ ์†์œผ๋กœ ํฌ์ฆˆ ๋ฆฌํƒ€๊ฒŒํŒ…(pose retargeting)ํ•˜๋Š” ๊ธฐ์ˆ ์€ ์˜ค๋žซ๋™์•ˆ ๋„์ „์ ์ธ ๋ฌธ์ œ๋กœ ๋‚จ์•„ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜๋‚  ์ธ๊ฐ„ ์†์˜ ๋ชจ์…˜ ์บก์ฒ˜ ๊ธฐ์ˆ (์˜ˆ: MANO ๋ชจ๋ธ ๋“ฑ)๋กœ๋ถ€ํ„ฐ ์ •๋ฐ€ํ•œ ์† ์ถ”์ ์ด ๊ฐ€๋Šฅํ•ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ๋กœ๋ด‡ ์†์œผ๋กœ ์˜ฎ๊ธฐ๋Š” ๊ณผ์ •์—๋Š” ์—ฌ์ „ํžˆ ์—ฌ๋Ÿฌ ๋‚œ์ œ๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ (1) ์ธ๊ฐ„ ์†๊ณผ ๋กœ๋ด‡ ์†์˜ ํ˜•ํƒœ์  ์ฐจ์ด(๊ธธ์ด, ๊ด€์ ˆ ๋ฒ”์œ„ ๋“ฑ)๋กœ ์ธํ•œ ๋ถˆ์ผ์น˜, (2) ์†๊ณผ ๋ฌผ์ฒด ์‚ฌ์ด ์ ‘์ด‰ ์ƒํ˜ธ์ž‘์šฉ์„ ์ œ๋Œ€๋กœ ๋ชจ๋ธ๋งํ•˜์ง€ ๋ชปํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋น„ํ˜„์‹ค์ ์ธ ๋™์ž‘(์˜ˆ: ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด๋ฅผ ๋šซ๊ณ  ์ง€๋‚˜๊ฐ€๋Š” ๊ด€ํ†ต ํ˜„์ƒ ๋“ฑ), ๊ทธ๋ฆฌ๊ณ  (3) ๋น„ํšจ์œจ์ ์ธ ์ตœ์ ํ™” ๊ณผ์ •์œผ๋กœ ์ธํ•œ ์‹ค์‹œ๊ฐ„์„ฑ ๋ถ€์กฑ ๋ฐ ๋ถ€์ •ํ™•์„ฑ ๋ฌธ์ œ๊ฐ€ ์ง€์ ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋‹จ์ˆœ ์šด๋™ํ•™์  ๋งคํ•‘ ๊ธฐ๋ฐ˜ ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฐฉ๋ฒ•๋“ค์€ ์‚ฌ๋žŒ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ๋กœ๋ด‡ ๊ด€์ ˆ์— ์ง์ ‘ ๋Œ€์‘์‹œํ‚ค์ง€๋งŒ, ์‚ฌ๋žŒ/๋กœ๋ด‡ ์† ๊ตฌ์กฐ ์ฐจ์ด๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์•„ ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด๋ฅผ ๊ด€ํ†ตํ•˜๊ฑฐ๋‚˜ ์ ‘์ด‰์ด ๋ถˆ์•ˆ์ •ํ•ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์ปธ์Šต๋‹ˆ๋‹ค. ํ•œํŽธ ์—๋„ˆ์ง€ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋“ค์€ ๊ด€ํ†ต ํŽ˜๋„ํ‹ฐ๋‚˜ ์ ‘์ด‰ ๊ฑฐ๋ฆฌ ์ตœ์†Œํ™” ๊ฐ™์€ ์ธ์œ„์ ์ธ ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ’€๋ ค๊ณ  ์‹œ๋„ํ–ˆ์œผ๋‚˜, ์ธ๊ฐ„ ์† ๋™์ž‘์˜ ๊ณ ์œ ํ•œ ์ œ์•ฝ(์˜ˆ: ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ทธ๋ฆฝ ํ˜•ํƒœ)์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ด ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•(์˜ˆ: DexPilot, AnyTeleop ๋“ฑ ์‹ค์‹œ๊ฐ„ ํ…Œ๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ๊ธฐ๋ฒ•)์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์‚ฌ์ „์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ์†๋„๋Š” ๋†’์˜€์ง€๋งŒ, ์ •๋ฐ€ํ•œ ๊ณต๊ฐ„ ์ •๋ ฌ์ด๋‚˜ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ ์ธก๋ฉด์—์„œ๋Š” ์—ฌ์ „ํžˆ ๋ถ€์กฑํ•จ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์š”์ปจ๋Œ€, ์ด์ „๊นŒ์ง€์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ •ํ™•๋„ vs. ์†๋„, ๋ฌผ๋ฆฌ์  ํ˜„์‹ค๊ฐ vs. ๋ฐ์ดํ„ฐ ๋‹ค์–‘์„ฑ ์‚ฌ์ด์—์„œ ๊ท ํ˜• ์žกํžŒ ํ•ด๋ฒ•์„ ์ œ์‹œํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.

DexFlow๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ํ†ตํ•ฉ์  ์† ํฌ์ฆˆ ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๋กœ์„œ, ์‚ฌ๋žŒ ์†์˜ ๋™์ž‘์„ ๋กœ๋ด‡ ์†์œผ๋กœ ์˜ฎ๊ธฐ๋Š” ๊ณผ์ •์—์„œ ์ •ํ™•์„ฑ๊ณผ ํ˜„์‹ค๊ฐ, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ํ™•๋ณด ํšจ์œจ๊นŒ์ง€ ๋ชจ๋‘ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ์—์„œ๋Š” DexFlow์˜ ๊ธฐ์ˆ ์  ๊ธฐ์—ฌ, ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„์ , ๊ทธ๋ฆฌ๊ณ  ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ์ค‘์ ์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

2.2 ๊ธฐ์ˆ ์  ๊ธฐ์—ฌ (ํ•ต์‹ฌ ์•„์ด๋””์–ด ๋ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜)

DexFlow๊ฐ€ ์ œ์•ˆํ•˜๋Š” ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์ ‘์ด‰ ์ธ์‹์„ ๊ฒฐํ•ฉํ•œ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ, ์‚ฌ๋žŒ ์†์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋™์ž‘์„ ๋กœ๋ด‡ ์†์— ์ด์‹ํ•˜๋ฉด์„œ๋„ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ทธ๋ฆฝ(grip) ์ƒํ˜ธ์ž‘์šฉ์ด ์‚ฌ์‹ค์ ์œผ๋กœ ์œ ์ง€๋˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ „์—ญ ์ตœ์ ํ™” โ†’ ์ ‘์ด‰ ์ถ”์ถœ/ํ•„ํ„ฐ๋ง โ†’ ๊ตญ์†Œ ์ตœ์ ํ™”์˜ 3๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ์ ˆ์ฐจ๋ฅผ ํ†ตํ•ด ๋ฌธ์ œ๋ฅผ ๋‹จ๊ณ„๋ณ„๋กœ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜์—์„œ๋Š” DexFlow์˜ ์ฃผ์š” ๊ธฐ์ˆ ์  ๊ธฐ์—ฌ๋ฅผ ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค:

  • โ‘  ๊ณ„์ธต์  ์ „์—ญ-๊ตญ์†Œ ์ตœ์ ํ™” ์ ‘๊ทผ: ์šฐ์„  ์‚ฌ๋žŒ ์† ํฌ์ฆˆ์™€ ์ตœ๋Œ€ํ•œ ์œ ์‚ฌํ•œ ๋กœ๋ด‡ ์† ์ดˆ๊ธฐ ์ž์„ธ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ์ „์—ญ ์ตœ์ ํ™”(global search)๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์‚ฌ๋žŒ ์† ๊ด€์ ˆ ๊ตฌ์„ฑ๊ณผ ๋กœ๋ด‡ ์† ๊ด€์ ˆ ์‚ฌ์ด์˜ ์ฐจ์ด๋ฅผ ์ค„์ด๋Š” ์—๋„ˆ์ง€ ํ•จ์ˆ˜๋ฅผ ์ •์‹ํ™”ํ•˜์—ฌ, ๋กœ๋ด‡ ์†์ด ํ•ด๋ถ€ํ•™์ ์œผ๋กœ ์ •๋ ฌ๋œ ์ž์„ธ๋ฅผ ์ทจํ•˜๋„๋ก ํ•˜๋Š” ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” GN_CRS2_LM์ด๋ผ๋Š” ๊ธ€๋กœ๋ฒŒ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•ด ๋กœ๋ด‡ ์†์˜ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ์ตœ์ ํ™”ํ–ˆ๋‹ค๊ณ  ์„ค๋ช…ํ•˜๋Š”๋ฐ, ์ด ๊ณผ์ •์—์„œ ์‚ฌ๋žŒ ์†์˜ ๊ด€์ ˆ ์ œ์•ฝ๊ณผ ๋กœ๋ด‡ ์†์˜ ๊ธฐ๊ตฌํ•™์„ ๋ชจ๋‘ ๊ณ ๋ คํ•˜์—ฌ ์ดˆ๊ธฐ ๊ด€์ ˆ ๊ตฌ์„ฑ์„ ์ฐพ์•„๋ƒ…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์–ป์€ ์ดˆ๊ธฐ ํฌ์ฆˆ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ง€์—ญ์  ํƒ์ƒ‰ ๋ฐ ์ ‘์ด‰ ์กฐ์ •์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์ „์—ญ ๋‹จ๊ณ„ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ฐœ์ ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ํ˜„์‹ค์„ฑ ์žˆ๋Š” ์†๊ฐ€๋ฝ ๊ตฌ์„ฑ์„ ์ฐพ์•„๋‚ธ ๋’ค, ์‹ค์ œ ๋ฌผ์ฒด์™€์˜ ์ ‘์ด‰์„ ๊ณ ๋ คํ•œ ๋ฏธ์„ธ ์กฐ์ •(contact-aware refinement)์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ 2๋‹จ๊ณ„ ์ตœ์ ํ™” ์ „๋žต์„ ํ†ตํ•ด ๋จผ์ € ์ธ๊ฐ„ ๋™์ž‘์˜ ๊ฑฐ์‹œ์  ํ˜•ํƒœ๋ฅผ ๋งž์ถ”๊ณ , ์ดํ›„ ๋ฏธ์‹œ์  ์ ‘์ด‰๊นŒ์ง€ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ํ•ด๋ถ€ํ•™์  ์ •ํ•ฉ์„ฑ๊ณผ ๋ฌผ๋ฆฌ์  ๊ฐœ์—ฐ์„ฑ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ์ €์ž๋“ค์€ ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„๋œ ์—๋„ˆ์ง€ ํ•ญ๋“ค์„ ๋„์ž…ํ•˜์—ฌ ์ •๋ ฌ ์˜ค์ฐจ ์ตœ์†Œํ™”์™€ ๋ฌผ๋ฆฌ์  ๊ทธ๋ฆฝ ์•ˆ์ •์„ฑ ๋‘ ๋ชฉํ‘œ๋ฅผ ๊ท ํ˜• ์žˆ๊ฒŒ ๋‹ฌ์„ฑํ–ˆ๋‹ค๊ณ  ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

  • โ‘ก ์ด์ค‘ ์ž„๊ณ„๊ฐ’ ์ ‘์ด‰ ๊ฐ์ง€ ๋ฐ ์‹œ๊ฐ„์  ์Šค๋ฌด๋”ฉ: DexFlow์˜ ๋‘ ๋ฒˆ์งธ ๊ธฐ์—ฌ๋Š” ์†-๋ฌผ์ฒด ์ ‘์ด‰ ์ •๋ณด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋ชจ๋“ˆ์ž…๋‹ˆ๋‹ค. ์ „์—ญ ๋ฆฌํƒ€๊ฒŒํŒ… ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์นœ ๋กœ๋ด‡ ์†์ด ๋ฌผ์ฒด์— ๊ทผ์ ‘ํ•˜๊ณ  ๋‚œ ํ›„, ๊ฐ ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด์— ์ ‘์ด‰ํ–ˆ๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํŒ์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด์ค‘ ์ž„๊ณ„๊ฐ’(double-threshold) ๊ธฐ๋ฐ˜ ์ ‘์ด‰ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์†๊ฐ€๋ฝ ๋๊ณผ ๋ฌผ์ฒด ํ‘œ๋ฉด ์‚ฌ์ด ๊ฑฐ๋ฆฌ๊ฐ€ ์ฒซ ๋ฒˆ์งธ ์ž„๊ณ„๊ฐ’ ์ด๋‚ด๋กœ ๋“ค์–ด์˜ค๋ฉด ์ž ์ •์ ์œผ๋กœ ์ ‘์ด‰์œผ๋กœ ๊ฐ„์ฃผํ•˜๊ณ , ๋‘ ๋ฒˆ์งธ ๋” ์—„๊ฒฉํ•œ ์ž„๊ณ„๊ฐ’์„ ์ ์šฉํ•ด ๋…ธ์ด์ฆˆ๋‚˜ ์˜ค์ฐจ๋กœ ์ธํ•œ ์ž˜๋ชป๋œ ์ ‘์ด‰ ํŒ๋‹จ์„ ๊ฑธ๋Ÿฌ๋ƒ…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ”„๋ ˆ์ž„๋ณ„ ์–ป์–ด์ง„ ์ ‘์ด‰ ์ •๋ณด๋Š” ๋ฐ”๋กœ ์‚ฌ์šฉ๋˜์ง€ ์•Š๊ณ , ์ธ์ ‘ ํ”„๋ ˆ์ž„๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์Šค๋ฌด๋”ฉ๋ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์ ‘์ด‰ ์ƒํƒœ๊ฐ€ ํ•œ ํ”„๋ ˆ์ž„์—์„œ ๋ฐœ์ƒํ–ˆ๋‹ค ์‚ฌ๋ผ์ง€๋Š” ์ผ์‹œ์  ํ”Œ๋Ÿญํˆฌ์—์ด์…˜(์ถœ๋ ์ž„)์„ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ๊ธฐ๋ฐ˜์˜ ํ”„๋ ˆ์ž„-ํˆฌ-ํ”„๋ ˆ์ž„ ์™„ํ™”(smoothing) ์ฒ˜๋ฆฌ๋ฅผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๊ฐ„์  ํ•„ํ„ฐ๋ง์„ ๊ฑฐ์น˜๋ฉด ์žก์Œ์— ๊ฐ•์ธํ•œ ์•ˆ์ •๋œ ์ ‘์ด‰ ์ง€๋„(contact map)๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์—ฐ์†๋œ ๋™์ž‘ ์‹œํ€€์Šค์—์„œ ์ ‘์ด‰ ์—ฌ๋ถ€๊ฐ€ ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์ด์ค‘ ๊ธฐ์ค€์œผ๋กœ ์ ‘์ด‰์„ ๊ฒ€์ถœํ•˜๊ณ  ์‹œ๊ฐ„์ ์œผ๋กœ ํ™•์ •ํ•จ์œผ๋กœ์จ ๊ธฐ์กด ๋ฐฉ๋ฒ•์—์„œ ํ”ํ–ˆ๋˜ ์ ‘์ด‰ ์‹ ํ˜ธ์˜ ๋“ค์ญ‰๋‚ ์ญ‰ํ•จ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด์†Œํ–ˆ์Šต๋‹ˆ๋‹ค.

  • โ‘ข ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐ ํฌ๋กœ์Šค-ํ•ธ๋“œ(topology) ์ด์‹: DexFlow๋Š” ๋‹จ์ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ธก๋ฉด์—์„œ๋„ ํฐ ๊ธฐ์—ฌ๋ฅผ ํ•ฉ๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ DexFlow๋ฅผ ํ™œ์šฉํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋กœ๋ถ€ํ„ฐ ์ธ๊ฐ„ ์† ๋ฐ ๊ฐ์ฒด ์ƒํ˜ธ์ž‘์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋Œ€๊ทœ๋ชจ ๋กœ๋ด‡ ๊ทธ๋ฆฝ ๋™์ž‘ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ธ๊ฐ„ ์† ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ(MANO ๊ธฐ๋ฐ˜)์™€ ์—ฌ๋Ÿฌ 3D ๋ฌผ์ฒด ๋ชจ๋ธ(YCB ๋ฒค์น˜๋งˆํฌ ๊ฐ์ฒด ๋“ฑ)์„ ๊ฒฐํ•ฉํ•˜์—ฌ, ๋กœ๋ด‡ ์†(ShadowHand ๋ฐ Allegro Hand)์— ๋Œ€ํ•œ 292,000ํ”„๋ ˆ์ž„์— ๋‹ฌํ•˜๋Š” ๊ทธ๋ฆฝ ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์€ ๋‹ค์–‘ํ•œ ๊ทธ๋ฆฝ ๋™์ž‘ ์‹œ๋‚˜๋ฆฌ์˜ค(์•ˆ์ •์  ํŒŒ์ง€, ๋™์  ์กฐ์ •, ์—ฌ๋Ÿฌ ์†๊ฐ€๋ฝ ํ˜‘๋ ฅ ๋“ฑ)๋ฅผ ํฌ๊ด„ํ•˜๋ฉฐ, ํŠนํžˆ ํ•œ ์ธ๊ฐ„ ์† ๋™์ž‘์„ ์„œ๋กœ ๋‹ค๋ฅธ ๋กœ๋ด‡ ์† ํ˜•ํƒœ์— ๋งคํ•‘ํ•˜๋Š” ํฌ๋กœ์Šค-์† ํ† ํด๋กœ์ง€ ์ด์‹๊นŒ์ง€ ์ง€์›ํ•˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ธ๊ฐ„ ์†์˜ ํ•˜๋‚˜์˜ grasp ๋™์ž‘(์˜ˆ: ์ง‘๊ฒŒ ์žก๊ธฐ, ๊ฐ์‹ธ์žก๊ธฐ ๋“ฑ)์„ ShadowHand์™€ Allegro ๊ฐ™์ด ์†๊ฐ€๋ฝ ๊ฐœ์ˆ˜์™€ ํ˜•ํƒœ๊ฐ€ ๋‹ค๋ฅธ ๋กœ๋ด‡ ์†์— ๊ฐ๊ฐ ์ „๋‹ฌํ•ด๋„ ๋ณธ๋ž˜์˜ ์˜๋„๋œ ํŒŒ์ง€ ํ˜•ํƒœ๊ฐ€ ์œ ์ง€๋˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์–ป์€ ํ†ตํ•ฉ ๋ฐ์ดํ„ฐ์…‹์€ ๊ธฐ์กด ๋Œ€๋น„ ํ•™์Šต ๋ฐ ํ‰๊ฐ€์— ์œ ๋ฆฌํ•œ ๊ทœ๋ชจ์™€ ๋‹ค์–‘์„ฑ์„ ๊ฐ€์ง€๋ฉฐ, DexFlow์˜ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋’ท๋ฐ›์นจํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์— ๋”ฐ๋ฅด๋ฉด ์ด ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•œ DexFlow๋Š” ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŒํŒ… ์†”๋ฃจ์…˜๋“ค ๋Œ€๋น„ ์ˆ˜ ๋ฐฐ์— ์ด๋ฅด๋Š” semantic ์„ฑ๊ณต๋ฅ  ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค๊ณ  ๋ณด๊ณ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆผ 1: DexFlow๊ฐ€ ์ œ์•ˆํ•˜๋Š” ์†-๋ฌผ์ฒด ๊ทธ๋ฆฝ ๋ฆฌํƒ€๊ฒŒํŒ… ํŒŒ์ดํ”„๋ผ์ธ์˜ ๊ฐœ๋žต๋„. ์‚ฌ๋žŒ ์† ๋™์ž‘๊ณผ ๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ ์‹œํ€€์Šค(์™ผ์ชฝ)๋ฅผ ์ž…๋ ฅ๋ฐ›์•„, (1) ๊ฐ์ฒด ์Šค์ผ€์ผ ์กฐ์ • ๋ฐ ์ดˆ๊ธฐ ๋กœ๋ด‡ ์† ์ž์„ธ ๋ฆฌํƒ€๊ฒŒํŒ…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ดํ›„ (2) ์ด์ค‘ ๋ฌธํ„ฑ ์ ‘์ด‰ ๊ฒ€์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋กœ๋ด‡ ์†๊ณผ ๋ฌผ์ฒด ๊ฐ„ ์ดˆ๊ธฐ ์ ‘์ด‰ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ณ , ์ธ์ ‘ ํ”„๋ ˆ์ž„๋“ค์— ๊ฑธ์ณ ์‹œ๊ฐ„์  ์Šค๋ฌด๋”ฉ์„ ์ ์šฉํ•˜์—ฌ ์•ˆ์ •๋œ ์ ‘์ด‰ ์ƒํƒœ๋ฅผ ํ™•๋ณดํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ (3) ์†๊ฐ€๋ฝ๋ณ„ ์„ธ๋ถ€ ์ตœ์ ํ™” ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ์ ‘์ด‰์ด ๊ฐ์ง€๋œ ์†๊ฐ€๋ฝ(์˜ˆ: ์—„์ง€, ์ค‘์ง€ ๋“ฑ)์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๋ฏธ์„ธ ์กฐ์ •ํ•œ๋‹ค. ์ด๋•Œ ์ ‘์ด‰ ์ •๋ณด๊ฐ€ ์—†๋Š” ์†๊ฐ€๋ฝ(๊ทธ๋ฆผ ์˜ˆ์‹œ์˜ ๊ฒ€์ง€)์€ ๊ฑด๋„ˆ๋›ฐ์–ด ๋ถˆํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ์ค„์ด๊ณ  ํšจ์œจ์„ ๋†’์ธ๋‹ค. ์ด๋Ÿฐ ๋‹จ๊ณ„์  ์ตœ์ ํ™”๋ฅผ ๊ฑฐ์น˜๋ฉด ์‚ฌ๋žŒ ์†์˜ ์กฐ์ž‘ ์˜๋„๊ฐ€ ๋กœ๋ด‡ ์†์— ์ •ํ™•ํžˆ ์ „๋‹ฌ๋˜๋Š” ๋™์‹œ์— ๋ฌผ๋ฆฌ์ ์œผ๋กœ๋„ ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ํŒŒ์ง€ ๋™์ž‘์ด ์™„์„ฑ๋œ๋‹ค.

2.3 ๊ธฐ์กด ์—ฐ๊ตฌ์™€์˜ ๋น„๊ต (DexFlow์˜ ์ฐจ๋ณ„์ )

์† ํฌ์ฆˆ ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฐ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์•ผ์—์„œ DexFlow๊ฐ€ ๊ฐ€์ง€๋Š” ์ฐจ๋ณ„์ ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด, ๋ช‡ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๊ธฐ์กด ์ ‘๊ทผ๋“ค๊ณผ ๊ธฐ์ˆ ์ ์œผ๋กœ ๋น„๊ตํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

  • ์ง์ ‘ ๋งคํ•‘ ๊ธฐ๋ฐ˜ ๋ฆฌํƒ€๊ฒŒํŒ… vs. DexFlow: ์ดˆ์ฐฝ๊ธฐ ๋ฆฌํƒ€๊ฒŒํŒ… ๊ธฐ๋ฒ•๋“ค์€ ์ฃผ๋กœ ์šด๋™ํ•™์  ์ง์ ‘ ๋งคํ•‘์„ ์‚ฌ์šฉํ•˜์—ฌ, ์ธ๊ฐ„ ์† ๊ฐ๋„๋ฅผ ๋กœ๋ด‡ ์† ๊ด€์ ˆ์— ๋‹จ์ˆœ ๋Œ€์‘์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๊ตฌํ˜„์ด ์‰ฝ๊ณ  ์‹ค์‹œ๊ฐ„ ์ ์šฉ์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ์‚ฌ๋žŒ ์† vs. ๋กœ๋ด‡ ์†์˜ ํ˜•ํƒœ ์ฐจ์ด(์˜ˆ: ์†๊ฐ€๋ฝ ๊ธธ์ด, ๊ด€์ ˆ ๋ฒ”์œ„)๊ฐ€ ๋ฐ˜์˜๋˜์ง€ ์•Š์•„ ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด๋‚˜ ๋‹ค๋ฅธ ์†๊ฐ€๋ฝ์„ ๋šซ๊ณ  ์ง€๋‚˜๊ฐ€๋Š” ๊ด€ํ†ต ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ ์‚ฌ๋žŒ์—๊ฒ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ผœ์žก๋Š” ๋™์ž‘์ด ๋กœ๋ด‡์— ๊ทธ๋Œ€๋กœ ์ ์šฉ๋˜๋ฉด ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์ด ๊ฒน์น˜๊ฑฐ๋‚˜ ๋ฌผ์ฒด ๋‚ด๋ถ€๋กœ ๋“ค์–ด๊ฐ€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋นˆ๋ฒˆํ–ˆ์Šต๋‹ˆ๋‹ค. DexFlow๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์ „์—ญ ์ตœ์ ํ™” ๋‹จ๊ณ„์—์„œ ๋กœ๋ด‡ ์†์„ ์‚ฌ๋žŒ ์†์— ์ตœ๋Œ€ํ•œ ๋งž์ถ”๊ณ , ์ง€์—ญ ์ ‘์ด‰ ์ตœ์ ํ™” ๋‹จ๊ณ„์—์„œ ๊ด€ํ†ต์„ ์ค„์ด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๋‹จ์ˆœํžˆ ๊ด€์ ˆ๊ฐ์„ ๋ณต์‚ฌํ•˜๋Š” ๋Œ€์‹  ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜์—ฌ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ์„ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ๊ด€ํ†ต ์•„ํ‹ฐํŒฉํŠธ์™€ ๋ถˆ์•ˆ์ •ํ•œ ์ ‘์ด‰ ํŒจํ„ด์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ DexFlow๋Š” ๊ธฐ์กด ์ง์ ‘ ๋งคํ•‘ ๊ธฐ๋ฒ•์— ๋น„ํ•ด ํ˜„์‹ค์ ์ธ ๊ทธ๋ฆฝ ์žฌํ˜„์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

  • ์ตœ์ ํ™” ๊ธฐ๋ฐ˜/๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฒ• vs. DexFlow: ๊ด€์ ˆ ๊ฐ๋„ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๊ทธ๋ฆฝ์„ ์ƒ์„ฑํ•˜๋Š” ์ ‘๊ทผ์€ DexFlow ์ด์ „์—๋„ ์กด์žฌํ–ˆ์œผ๋ฉฐ, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋‚˜ ์—๋„ˆ์ง€ ํ•จ์ˆ˜ ์ตœ์ ํ™”๋ฅผ ํ™œ์šฉํ•œ ์˜ˆ๋กœ GraspIt!, DexGraspNet, FRoGGeR, SpringGrasp ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋“ค์€ ๋ฌผ์ฒด ํŒŒ์ง€๋ฅผ ์ œ์•ฝ ์ถฉ์กฑ ๋ฌธ์ œ๋กœ ๋ณด๊ณ  ์ ‘์ด‰ ์•ˆ์ •์„ฑ, ํž˜ ํ์‡„(grasp wrench) ๋“ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ทธ๋ฆฝ์„ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์  ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋“ค์€ ๋Œ€์ฒด๋กœ ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ๊ณ , ๋ฌด์—‡๋ณด๋‹ค ์ธ๊ฐ„ ์†์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ชจ์…˜์— ๋Œ€ํ•œ ์‚ฌ์ „์ง€์‹์ด ๋ถ€์กฑํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, FRoGGeR๋‚˜ SpringGrasp ๊ฐ™์€ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๊ทธ๋ฆฝ์„ ๋งŒ๋“ค์–ด๋‚ด์ง€๋งŒ ๊ทธ ๊ณผ์ •์—์„œ ์‚ฌ๋žŒ์Šค๋Ÿฌ์šด ์†๋ชจ์–‘์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•˜๊ณ , ํ•ด๋‹ต ํƒ์ƒ‰์— ๊ธด ์‹œ๊ฐ„์ด ์†Œ์š”๋˜์—ˆ์Šต๋‹ˆ๋‹ค. DexFlow๋Š” ์ด๋Ÿฌํ•œ ์ ์„ ์ธ๊ฐ„ ์‹œๆผ” ๋ฐ์ดํ„ฐ ํ™œ์šฉ๊ณผ ๊ณ„์ธต์  ์ ‘๊ทผ์œผ๋กœ ๊ฐœ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ๋žŒ ์† ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ(MANO)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ถœ๋ฐœํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ดˆ๊ธฐ ํ•ด๊ฐ€ ํ˜„์‹ค์„ฑ ์žˆ๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ ๋น ๋ฅธ ์ „์—ญ ํƒ์ƒ‰ ํ›„ ๊ตญ์†Œ ์ ‘์ด‰ ๋ฏธ์„ธ์กฐ์ •์„ ํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ ํšจ์œจ์„ ๋†’์˜€์Šต๋‹ˆ๋‹ค. ์‹ค์ œ ๋…ผ๋ฌธ ๋น„๊ต์— ๋”ฐ๋ฅด๋ฉด DexFlow๋Š” DexGraspNet ๋Œ€๋น„ ์ ‘์ด‰ ๊ฑฐ๋ฆฌ(contact distance)๋ฅผ ํ•œ ์ž๋ฆฌ ์ˆ˜๋กœ ์ค„์ด๊ณ ** (6.90 โ†’ 0.77), SpringGrasp ๋Œ€๋น„ ๊ด€ํ†ต ๊นŠ์ด(penetration depth)๋ฅผ ํฌ๊ฒŒ ๋‚ฎ์ถ”๋Š” ๋“ฑ ๋ฌผ๋ฆฌ์  ํ’ˆ์งˆ ๋ฉด์—์„œ ํ•œ ๋‹จ๊ณ„ ํ–ฅ์ƒ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์ ‘์ด‰ ํ’ˆ์งˆ ๋ฉด์—์„œ DexFlow์˜ ์ ‘์ด‰ ๊ฐ„๊ฒฉ์€ ๊ธฐ์กด ๋Œ€๋น„ 10๋ฐฐ ์ด์ƒ ๊ฐœ์„ ๋˜์—ˆ๊ณ , ๊ด€ํ†ต ํ˜„์ƒ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์— ๋น„ํ•ด ํ˜„์ €ํžˆ ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ํŠน์ • ์ตœ์ ํ™” ๊ธฐ๋ฒ•(BODex ๋“ฑ)์ด ๊ด€ํ†ต์„ ๊ฑฐ์˜ ์™„์ „ํžˆ ์ œ๊ฑฐํ•˜๋„๋ก ํŠนํ™”๋œ ๊ฒฝ์šฐ๋„ ์žˆ๋Š”๋ฐ, DexFlow๋„ ์ด์— ๋ฒ„๊ธˆ๊ฐ€๋Š” ์ˆ˜์ค€์— ๊ทผ์ ‘ํ•˜๋ฉด์„œ๋„ ์ „๋ฐ˜์ ์ธ ๊ท ํ˜• ์žกํžŒ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•œ ๊ฒƒ์ด ํŠน์ง•์ž…๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด, DexFlow๋Š” ์ด์ „ ์ตœ์ ํ™”/์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋“ค์˜ ๋ฌผ๋ฆฌ์  ํ˜„์‹ค์„ฑ์„ ๊ณ„์Šนํ•˜๋ฉด์„œ๋„ ์ธ๊ฐ„ ๋™์ž‘์˜ ์ž์—ฐ์Šค๋Ÿฌ์›€๊ณผ ๊ณ„์‚ฐ ํšจ์œจ์„ ๋™์‹œ์— ํ™•๋ณดํ•œ ๋ฐœ์ „๋œ ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.

  • ํ•™์Šต ๊ธฐ๋ฐ˜(์˜์ƒยท์‹œๆผ”ยท๊ฐ•ํ™”ํ•™์Šต) ๊ธฐ๋ฒ• vs. DexFlow: ์ตœ๊ทผ ๋“ค์–ด ์ธ๊ฐ„ ๋™์ž‘ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋„ ๋‹ค์ˆ˜ ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. DexMV๋Š” ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ 3D ์†-๋ฌผ์ฒด ํฌ์ฆˆ ์‹œํ€€์Šค๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๋กœ๋ด‡์œผ๋กœ ๋ชจ๋ฐฉํ•˜๋Š” ์‹œ๋„๋ฅผ ํ–ˆ์œผ๋‚˜, ๊ฐ์ฒด์˜ ์ •ํ™•ํ•œ ์ƒํƒœ ์ •๋ณด๋ฅผ ๊ฐ€์ •ํ•ด์•ผ ํ•˜๋Š” ๋“ฑ ํ˜„์‹ค ์ ์šฉ์— ์ œ์•ฝ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. AnyTeleop, DexPilot ๋“ฑ์˜ ํ…”๋ ˆ์˜ต ์ œ์–ด ์‹œ์Šคํ…œ์€ ์นด๋ฉ”๋ผ๋กœ ์ถ”์ ํ•œ ์ธ๊ฐ„ ์† ๋™์ž‘์„ ๋กœ๋ด‡ ์†์— ์‹ค์‹œ๊ฐ„ ์ „์†กํ•ด ์›๊ฒฉ ์กฐ์ž‘์„ ๊ตฌํ˜„ํ–ˆ์ง€๋งŒ, ๋น ๋ฅธ ์‘๋‹ต์„ ์œ„ํ•ด ์ •๊ตํ•จ์„ ์ผ๋ถ€ ํฌ๊ธฐํ•˜๋ฉด์„œ ์ •๋ฐ€ ์ž‘์—…์—์„œ ๊ณต๊ฐ„ ์ •๋ ฌ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๊ณค ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ViViDex์™€ ๊ฐ™์ด ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด ์ธ๊ฐ„ ๋น„๋””์˜ค ์‹œๆผ”์„ ๋ชจ๋ฐฉํ•˜๋Š” ์ ‘๊ทผ๋„ ์ œ์•ˆ๋˜์—ˆ๋Š”๋ฐ, ๋ฌผ๋ฆฌ์  ๊ทธ๋ฆฝ ์„ฑ๊ณต๋ฅ ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๊ณผ๊ฑฐ ๊ถค์  ๋ณด์ƒ ๋“ฑ์„ ์‚ฌ์šฉํ•˜๋ฉด์„œ๋„ ํŠน์ • ์ž‘์—…๋ณ„ ๋Œ€๋Ÿ‰์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด์™€ ๋‹ฌ๋ฆฌ DexFlow๋Š” ๋ช…์‹œ์ ์ธ ์ตœ์ ํ™”์™€ ์ ‘์ด‰ ๊ฒ€์ถœ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ๋•Œ๋ฌธ์—, ์ƒˆ๋กœ์šด ์ž‘์—…์ด๋‚˜ ๊ฐ์ฒด์— ๋Œ€ํ•ด ๋ฒ”์šฉ์ ์œผ๋กœ ์ ์šฉํ•˜๊ธฐ ์ˆ˜์›”ํ•˜๊ณ  ํŠน์ • ์ž‘์—… ๋ฐ์ดํ„ฐ์— ๋œ ์˜์กด์ ์ž…๋‹ˆ๋‹ค. ๋˜ํ•œ ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋“ค์ด ๊ฐ„ํ˜น ๋†“์น˜๋Š” ๋ฏธ์„ธํ•œ ์†๊ฐ€๋ฝ ์œ„์น˜๋‚˜ ์‹œ๊ฐ„์  ์•ˆ์ •์„ฑ์„ DexFlow๋Š” ์—๋„ˆ์ง€ ํ•จ์ˆ˜๋ฅผ ํ†ตํ•œ ๋ฏธ์„ธ์กฐ์ •๊ณผ ์Šค๋ฌด๋”ฉ์œผ๋กœ ํ™•๋ณดํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ DexFlow๋Š” ์‹ค์‹œ๊ฐ„์„ฑ์€ ๋‹ค์†Œ ์–‘๋ณดํ•˜์ง€๋งŒ, ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์ด ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ–ˆ๋˜ ๊ณต๊ฐ„์  ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ ์žˆ๋Š” ํ”„๋ ˆ์ž„๊ฐ„ ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜์—ฌ ์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ธก๋ฉด์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋Š” ์ฐจํ›„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•™์Šต์šฉ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, DexFlow๋Š” ๊ธฐ์ˆ  ๋ฐ๋ชจ ๋ฟ ์•„๋‹ˆ๋ผ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•™์Šต ํŒŒ์ดํ”„๋ผ์ธ์˜ ์ „์ฒ˜๋ฆฌ๋กœ์„œ๋„ ์˜๋ฏธ๊ฐ€ ํฝ๋‹ˆ๋‹ค.

2.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„ (์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐ ์‹œ๊ฐํ™”)

DexFlow์˜ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‹ค์–‘ํ•œ ๋ฒค์น˜๋งˆํฌ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์‹คํ—˜์€ ์ฃผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, 50๊ฐœ์˜ YCB ํ‘œ์ค€ ๋ฌผ์ฒด์— ๋Œ€ํ•ด ShadowHand ๋กœ๋ด‡ ์†(5์ง€)๊ณผ Allegro ๋กœ๋ด‡ ์†(4์ง€)์„ ์ด์šฉํ•œ ๋‹ค์ˆ˜์˜ ๊ทธ๋ฆฝ ์‹œํ€€์Šค๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์•ฝ 292K (29๋งŒ 2์ฒœ) ํ”„๋ ˆ์ž„์˜ ๊ทธ๋ฆฝ ๋ฐ์ดํ„ฐ๊ฐ€ DexFlow๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋˜์—ˆ๊ณ , ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์กด์˜ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹ ๋ฐ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Table I์€ DexFlow๊ฐ€ ์ƒ์„ฑํ•œ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹๋“ค์˜ ๊ทœ๋ชจ๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธฐ์กด DexGraspNet์€ ์•ฝ 132๋งŒ ๊ฐœ์˜ ๊ทธ๋ฆฝ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์ƒ์„ฑํ•œ ๋ฐ˜๋ฉด, DexFlow๋Š” 50๊ฐœ ๋ฌผ์ฒด์— ๋Œ€ํ•ด 29๋งŒ์—ฌ ํ”„๋ ˆ์ž„์˜ ์—ฐ์† ๋™์ž‘ ์‹œํ€€์Šค๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํฌ๊ด„ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ž์›์„ ์ œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ DexFlow ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์–‘ํ•œ ๋กœ๋ด‡ ์† ๊ตฌ์กฐ(Shadow, Allegro)์— ๋ชจ๋‘ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก ์ƒ์„ฑ๋œ๋‹ค๋Š” ์ ์—์„œ, ํŠน์ • ์†์— ํ•œ์ •๋˜์ง€ ์•Š๋Š” ๋ฒ”์šฉ์„ฑ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.

2.4.1 ์ •๋Ÿ‰์  ์ง€ํ‘œ ๋น„๊ต (Single-Frame ๊ธฐ์ค€ ์„ฑ๋Šฅ)

๋…ผ๋ฌธ์—์„œ๋Š” DexFlow์˜ ์„ฑ๋Šฅ์„ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ์ •๋Ÿ‰์ ์œผ๋กœ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ํ’ˆ์งˆ ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Table II๋Š” ๋Œ€ํ‘œ์ ์ธ ์ƒ์„ฑ ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ํ‘œ๋กœ, ์ฃผ๋กœ ๋‹จ์ผ ํ”„๋ ˆ์ž„ ๊ธฐ์ค€์˜ ๊ทธ๋ฆฝ ํ’ˆ์งˆ ํ†ต๊ณ„๋ฅผ ๋‹ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” Semantic Success Rate (SSR), ์ƒ์„ฑ ์†๋„(SPD), ๊ด€ํ†ต ๊นŠ์ด(PD), ์ ‘์ด‰ ๊ฑฐ๋ฆฌ(CD), ๊ทธ๋ฆฝ ์•ˆ์ •์„ฑ ์ง€ํ‘œ(FVR) ๋“ฑ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ๊ฐ ์ง€ํ‘œ๋Š” BODex๋ผ๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ์˜ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ์„ ๋”ฐ๋ฅด๋Š”๋ฐ, ๊ฐ„๋žตํžˆ ์„ค๋ช…ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • Semantic Success Rate (SSR): ์ƒ์„ฑ๋œ ๊ทธ๋ฆฝ์ด ์„ฑ๊ณต์ ์ธ ํŒŒ์ง€๋กœ ๊ฐ„์ฃผ๋˜๋Š” ๋น„์œจ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ƒ์—์„œ ์–ด๋–ค ๋ฐฉํ–ฅ์œผ๋กœ ์ค‘๋ ฅ์„ ๊ฑธ์–ด๋„ 100 ์Šคํ… ๋™์•ˆ ๋ฌผ์ฒด๋ฅผ ๋†“์น˜์ง€ ์•Š์œผ๋ฉด ์„ฑ๊ณต์œผ๋กœ ํŒ์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๋น„์œจ์„ SSR๋กœ ๋ณด๊ณ ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ’์ด ๋†’์„์ˆ˜๋ก ๋งŽ์€ ๊ทธ๋ฆฝ์ด ์‹ค์ œ๋กœ ๋ฌผ์ฒด๋ฅผ ๋“ค ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
  • ์ƒ์„ฑ ์†๋„ (SPD): ์ดˆ๋‹น ๋ช‡ ๊ฐœ์˜ ๊ทธ๋ฆฝ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ๋กœ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜์น˜๊ฐ€ ํด์ˆ˜๋ก ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์†๋„๊ฐ€ ๋น ๋ฆ„์„ ์˜๋ฏธํ•˜๋ฉฐ, ์‹ค์‹œ๊ฐ„์„ฑ์— ๊ฐ€๊นŒ์›€์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ๊ด€ํ†ต ๊นŠ์ด (PD): ์†๊ฐ€๋ฝ ๋ฉ”์‰ฌ๊ฐ€ ๋ฌผ์ฒด๋ฅผ ์–ผ๋งˆ๋‚˜ ๊นŠ๊ฒŒ ๊ด€ํ†ตํ–ˆ๋Š”์ง€๋ฅผ ์ธก์ •ํ•œ ๊ฐ’์ž…๋‹ˆ๋‹ค. ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ๊ด€ํ†ต์ด ์ ์–ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๋” ํƒ€๋‹นํ•œ ํŒŒ์ง€์ž…๋‹ˆ๋‹ค.
  • ์ ‘์ด‰ ๊ฑฐ๋ฆฌ (CD): ์†๊ฐ€๋ฝ๊ณผ ๋ฌผ์ฒด ์‚ฌ์ด ์ ‘์ด‰์  ๊ฐ„๊ฒฉ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด๋ฅผ ๋นˆํ‹ˆ์—†์ด ๋ฐ€์ฐฉํ•˜๊ฒŒ ์žก๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. (์ผ๋ถ€ ๋ฌธ๋งฅ์—์„œ Chamfer Distance๋ฅผ ์˜๋ฏธํ•˜๊ธฐ๋„ ํ•˜๋‚˜, ์—ฌ๊ธฐ์„œ๋Š” ์ ‘์ด‰ ํ’ˆ์งˆ ๊ด€๋ จ ์ง€ํ‘œ๋กœ ํ™œ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.)
  • FVR: ๋…ผ๋ฌธ์—์„œ ์ •์˜ํ•œ ์ถ”๊ฐ€์ ์ธ ํ’ˆ์งˆ ์ง€ํ‘œ๋กœ, (force closure๋‚˜ grasp ์•ˆ์ •์„ฑ๊ณผ ์—ฐ๊ด€๋œ ๋น„์œจ๋กœ ์ถ”์ •๋ฉ๋‹ˆ๋‹ค. ๊ฐ’์ด ๋†’์„์ˆ˜๋ก ์•ˆ์ •์ ์ธ ๊ทธ๋ฆฝ์ผ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ)

์ด๋Ÿฌํ•œ ์ง€ํ‘œ๋กœ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, DexFlow๋Š” ์ „๋ฐ˜์ ์œผ๋กœ ๊ท ํ˜• ์žกํžŒ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์šฐ์„  Semantic Success Rate(SSR)์„ ๋ณด๋ฉด, DexFlow๋Š” ์•ฝ 40.3%์˜ ์„ฑ๊ณต๋ฅ ์„ ๋‹ฌ์„ฑํ•˜์—ฌ, ๊ธฐ์กด ์ „ํ†ต์  ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฐฉ๋ฒ•์ธ DexRetarget์˜ 5.35%์— ๋น„ํ•ด ํฐ ํญ(์•ฝ 7.5๋ฐฐ)์œผ๋กœ ํ–ฅ์ƒ๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (DexRetarget์€ DexMV์˜ ํ›„์† ์˜คํ”ˆ์†Œ์Šค ๊ธฐ๋ฒ•์œผ๋กœ, ์ ‘์ด‰ ๊ณ ๋ ค๊ฐ€ ์—†์–ด ์„ฑ๊ณต๋ฅ ์ด ๋งค์šฐ ๋‚ฎ์•˜์Šต๋‹ˆ๋‹ค.) DexFlow์˜ SSR 40%๋Œ€๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ธ FRoGGeR์˜ 41.97%์™€ ๊ฑฐ์˜ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์œผ๋กœ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์ด ์•„๋‹Œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ์ด๋ฃฌ ์„ฑ๊ณผ์น˜๊ณ ๋Š” ๋งค์šฐ ๊ณ ๋ฌด์ ์ž…๋‹ˆ๋‹ค. ํ•œํŽธ BODex๋ผ๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ SSR์ด 89.5%๋กœ ์œ ๋‹ฌ๋ฆฌ ๋†’์•˜์ง€๋งŒ, ์ด๋Š” ํŠน์ • ๋กœ๋ด‡ ์†์— ํŠนํ™”๋œ ์ ‘๊ทผ์œผ๋กœ DexFlow์™€ ์ง์ ‘ ๋น„๊ตํ•˜๊ธฐ์—” ์„ฑ๊ฒฉ ์ฐจ์ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ์™ธ์˜ ๊ธฐ๋ฒ•๋“ค(DexGraspNet: 31.4%, SpringGrasp: 37.2%)๊ณผ ๋น„๊ตํ•˜๋ฉด DexFlow๊ฐ€ ๊ฐ€์žฅ ์•ž์„  ๊ทธ๋ฃน์— ์†ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋‹ค๋ฅธ ๋ฌผ๋ฆฌ์  ์ง€ํ‘œ๋“ค์„ ์‚ดํŽด๋ณด๋ฉด, ๊ด€ํ†ต ๊นŠ์ด(PD) ์ธก๋ฉด์—์„œ DexFlow๋Š” 8.5๋กœ, ๊ธฐ์กด ๋ฆฌํƒ€๊ฒŒํŒ…(์˜ˆ: DexRetarget์˜ 84.4)์— ๋น„ํ•ด ํ˜„๊ฒฉํžˆ ๋‚ฎ์€ ๊ด€ํ†ต์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” DexFlow์˜ ์ ‘์ด‰ ์ตœ์ ํ™” ๋‹จ๊ณ„๊ฐ€ ์†๊ฐ€๋ฝ์ด ๋ฌผ์ฒด๋ฅผ ์ง€๋‚˜์น˜๊ฒŒ ํŒŒ๊ณ ๋“œ๋Š” ํ˜„์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ์–ต์ œํ–ˆ์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋น„๋ก FRoGGeR๋‚˜ BODex๊ฐ€ ๊ด€ํ†ต ๊นŠ์ด๋ฅผ ๊ฐ๊ฐ 2.17, 0.37๊นŒ์ง€ ์ค„์—ฌ DexFlow๋ณด๋‹ค ๋” ์šฐ์ˆ˜ํ•˜์ง€๋งŒ, ์ด๋“ค์€ ๋ฌผ๋ฆฌ์—”์ง„ ๊ธฐ๋ฐ˜์˜ ๋ฐ˜๋ณต ์ตœ์ ํ™”๋กœ ๊ณ„์‚ฐ ๋น„์šฉ์ด ํฐ ๋Œ€๊ฐ€๋ฅผ ์น˜๋ฅธ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ์ ‘์ด‰ ๊ฑฐ๋ฆฌ(CD)๋Š” DexFlow๊ฐ€ 0.77์„ ๊ธฐ๋กํ•˜์—ฌ, FRoGGeR(0.88)๋ณด๋‹ค ๋‚ฎ๊ณ  BODex(0.28) ๋‹ค์Œ์œผ๋กœ ๋‘ ๋ฒˆ์งธ๋กœ ์šฐ์ˆ˜ํ•œ ์ ‘์ด‰ ๋ฐ€์ฐฉ๋„๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. DexFlow์˜ CD๋Š” DexGraspNet(6.90)์ด๋‚˜ SpringGrasp(6.18)์— ๋น„ํ•ด 10๋ฐฐ ์ด์ƒ ์ž‘์€ ๊ฐ’์œผ๋กœ, ์‚ฌ๋žŒ์ด ์žก๋“ฏ์ด ๋นˆํ‹ˆ์—†์ด ๋ฌผ์ฒด๋ฅผ ์ฅ๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ทธ๋ฆฝ์„ ์–ป์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ƒ์„ฑ ์†๋„(SPD)๋ฅผ ๋ณด๋ฉด DexFlow๋Š” 0.37๋กœ, 1.0์— ๊ฐ€๊นŒ์šด DexRetarget(0.96)๋ณด๋‹ค๋Š” ๋А๋ฆฌ์ง€๋งŒ DexGraspNet(0.93)๊ณผ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์ด๊ณ  SpringGrasp(0.48)๋ณด๋‹ค๋Š” ์•ฝ๊ฐ„ ๋А๋ฆฐ ์ •๋„์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ FRoGGeR์˜ SPD๊ฐ€ 0.0002์— ๋ถˆ๊ณผํ•œ ๊ฒƒ๊ณผ ๋น„๊ตํ•˜๋ฉด, DexFlow๊ฐ€ ํ˜„์‹ค์ ์ธ ์‹œ๊ฐ„ ์•ˆ์— ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค (FRoGGeR๋Š” ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•œ ๊ฐœ ๊ทธ๋ฆฝ์„ ์ฐพ๋Š”๋ฐ ๋งค์šฐ ์˜ค๋ž˜ ๊ฑธ๋ฆผ). ์ข…ํ•ฉํ•˜๋ฉด, DexFlow๋Š” ์ ˆ๋Œ€์ ์ธ ์„ฑ๊ณต๋ฅ  ๋ฉด์—์„œ ์ผ๋ถ€ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์— ์•ฝ๊ฐ„ ๋’ค์ณ์งˆ์ง€ ๋ชฐ๋ผ๋„, ๊ด€ํ†ต/์ ‘์ด‰/์†๋„ ๋“ฑ ์—ฌ๋Ÿฌ ์ง€ํ‘œ์—์„œ ๊ณ ๋ฅด๊ฒŒ ์šฐ์ˆ˜ํ•œ โ€œ๊ท ํ˜•ํ˜•โ€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์ด ์‹คํ—˜์œผ๋กœ ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๊ณง DexFlow๊ฐ€ ํ˜„์‹ค์ ์ธ ๋กœ๋ด‡ ๊ทธ๋ฆฝ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์— ์ „๋ฐ˜์ ์œผ๋กœ ์ ํ•ฉํ•œ ์ ‘๊ทผ์ž„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

๊ทธ๋ฆผ 2: ํฌ๋กœ์Šค-๋„๋ฉ”์ธ ์† ๋ชจ์…˜ ์ด์‹์— ๋Œ€ํ•œ DexFlow์˜ ๋ฐ๋ชจ ์žฅ๋ฉด. ์™ผ์ชฝ์€ ์ธ๊ฐ„ ์†์ด ์ž‘์€ ์ƒ์ž๋ฅผ ๊ฒ€์ง€์™€ ์—„์ง€ ์†๊ฐ€๋ฝ์œผ๋กœ ์ง‘๋Š” pinch grasp ๋™์ž‘์ด๊ณ , ์˜ค๋ฅธ์ชฝ์€ ํ•ด๋‹น ๋™์ž‘์„ Allegro ๋กœ๋ด‡ ์†(ํŒŒ๋ž€์ƒ‰, 4์†๊ฐ€๋ฝ)์œผ๋กœ ๋ฆฌํƒ€๊ฒŒํŒ…ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ ์†์˜ ์—„์ง€~์•ฝ์ง€ 4๊ฐœ ์†๊ฐ€๋ฝ ์›€์ง์ž„์ด ๋กœ๋ด‡ ์†์˜ 4๊ฐœ ์†๊ฐ€๋ฝ์— ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋Œ€์‘๋˜์–ด, ๋กœ๋ด‡ ์†๋„ ๋™์ผํ•œ ๋ฌผ์ฒด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ง‘์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. DexFlow๋Š” ์ด์ฒ˜๋Ÿผ ์„œ๋กœ ํ˜•ํƒœ๊ฐ€ ๋‹ค๋ฅธ ๋กœ๋ด‡ ์†๋“ค ๊ฐ„์—๋„ ์ผ๊ด€๋œ ํŒŒ์ง€ ๋™์ž‘ ์ด์‹์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋ฉฐ, ์ธ๊ฐ„ ์† ๋™์ž‘์˜ ์˜๋ฏธ๋ก ์  ์˜๋„(์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ์žก๋Š”๊ฐ€)๋ฅผ ์œ ์ง€ํ•œ๋‹ค๋Š” ์ ์—์„œ ํฐ ๊ฐ•์ ์„ ๋ณด์ž…๋‹ˆ๋‹ค.

2.4.2 ์‹œํ€€์Šค ๋ชจ์…˜ ํ’ˆ์งˆ ๋ฐ ๋™์ž‘ ์ž์—ฐ์Šค๋Ÿฌ์›€

DexFlow์˜ ํ‰๊ฐ€์—์„œ๋Š” ๋‹จ์ผ ํ”„๋ ˆ์ž„ ์„ฑ๊ณต๋ฅ ๋ฟ ์•„๋‹ˆ๋ผ, ์—ฐ์†์ ์ธ ๋™์ž‘ ์‹œํ€€์Šค์˜ ํ’ˆ์งˆ๋„ ์ค‘์š”ํ•˜๊ฒŒ ๋‹ค๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ฌผ์ฒด ์œ„์น˜ ๋ณ€ํ™”๋ฅผ ์ •๋ฐ€ ๋น„๊ตํ•˜๋Š” Chamfer Distance (CD) ๊ธฐ๋ฐ˜ ์ง€ํ‘œ์™€, ์†๋„/๊ฐ€์†๋„ ํ”„๋กœํŒŒ์ผ์˜ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์šฐ์„  ์‹œํ€€์Šค Chamfer ๊ฑฐ๋ฆฌ๋Š” ๊ฐ ์‹œ์ ์—์„œ ๋ฌผ์ฒด์˜ ์ ๊ตฐ(point cloud)์„ ๋น„๊ตํ•˜์—ฌ ๋กœ๋ด‡ ์†์ด ๋ฌผ์ฒด๋ฅผ ์›€์ง์ด๋Š” ๊ถค์ ์ด ์›๋ณธ ์ธ๊ฐ„ ์‹œ์—ฐ๊ณผ ์–ผ๋งˆ๋‚˜ ์ผ์น˜ํ•˜๋Š”๊ฐ€๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. DexFlow์˜ 1๋‹จ๊ณ„ ๋ฆฌํƒ€๊ฒŒํŒ… ๊ฒฐ๊ณผ๋Š” Chamfer Distance๊ฐ€ 0.008๋กœ, ๊ธฐ์กด DexRetarget์˜ 0.016๋ณด๋‹ค ์ ˆ๋ฐ˜์œผ๋กœ ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋กœ๋ด‡ ์†์ด ๋ฌผ์ฒด๋ฅผ ์›€์ง์ด๋Š” ๊ถค์ ์˜ ํ˜•์ƒ์ด ์‚ฌ๋žŒ ์†์˜ ๊ถค์ ๊ณผ ๋งค์šฐ ๊ฐ€๊น๊ฒŒ ๋งž์•„๋–จ์–ด์ง„๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, DexFlow์˜ ์ „์—ญ ์ตœ์ ํ™”๊ฐ€ ๊ณต๊ฐ„์  ์ •ํ•ฉ์„ฑ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ–ˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด์–ด์„œ ์ ‘์ด‰ ์ตœ์ ํ™” ํ›„์—๋„ Chamfer ๊ฐ’์ด 0.009๋กœ ์†Œํญ ์ฆ๊ฐ€ํ–ˆ์„ ๋ฟ์œผ๋กœ, ์—ฌ์ „ํžˆ DexRetarget ๋Œ€๋น„ ์ƒ๋‹นํžˆ ๋‚ฎ์€ ์˜ค์ฐจ๋ฅผ ์œ ์ง€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ฆ‰, DexFlow๋Š” ํ˜•ํƒœ ์ถ”์ข… ๋ฉด์—์„œ ๋›ฐ์–ด๋‚œ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๊ด€ํ†ต ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋‘ ๋งˆ๋ฆฌ ํ† ๋ผ๋ฅผ ์žก์•˜๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ DexFlow๊ฐ€ ์ƒ์„ฑํ•œ ๋™์ž‘์˜ ์‹œ๊ฐ„์  ์ž์—ฐ์Šค๋Ÿฌ์›€์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ์†๋„ ๋ถ„ํฌ ์ฐจ์ด์™€ ๊ฐ€์†๋„ ๋ณ€ํ™”๋ฅผ ๋น„๊ตํ–ˆ์Šต๋‹ˆ๋‹ค. ์ธ๊ฐ„ ์† ๋™์ž‘ ๋Œ€๋น„ ๋กœ๋ด‡ ์† ๋™์ž‘์˜ ์†๋„ ๋ถ„ํฌ ์ฐจ์ด๋Š” KL ๋ฐœ์‚ฐ์œผ๋กœ ์ธก์ •๋˜์—ˆ๋Š”๋ฐ, DexRetarget์˜ ๊ฐ’์ด 0.54์ธ ๋ฐ˜๋ฉด DexFlow ๋ฆฌํƒ€๊ฒŒํŒ… ๊ฒฐ๊ณผ๋Š” 0.48๋กœ ๋” ๋‚ฎ์•„์กŒ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋กœ๋ด‡ ์† ์›€์ง์ž„์˜ ์†๋„ ํŒจํ„ด์ด ์ธ๊ฐ„์˜ ์›๋ณธ ๋™์ž‘๊ณผ ๋” ์œ ์‚ฌํ•ด์กŒ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ ‘์ด‰ ์ตœ์ ํ™”๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ์†๋„ ๋ถ„ํฌ ์ฐจ์ด๋Š” ์•ฝ๊ฐ„ ์ฆ๊ฐ€ํ•˜์—ฌ 0.57์ด ๋˜์—ˆ์ง€๋งŒ, ์ด๋Š” ์ ‘์ด‰์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ถˆ๊ฐ€ํ”ผํ•œ ๋ฏธ์„ธ ์กฐ์ •์ด ๋“ค์–ด๊ฐ”๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๊ทธ์— ๋ฐ˜ํ•ด ๊ฐ€์†๋„ RMS ๊ฐ’์€ DexRetarget์˜ 0.083์—์„œ DexFlow ๋ฆฌํƒ€๊ฒŒํŒ… ๋‹จ๊ณ„์—์„œ 0.073์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค๊ฐ€, ์ตœ์ข… ์ตœ์ ํ™” ํ›„ 0.080์œผ๋กœ ์†Œํญ ์ƒ์Šนํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ฐ€์†๋„ RMS ์ฆ๊ฐ€๋Š” ์†๊ฐ€๋ฝ ๊ด€ํ†ต์„ ์—†์• ๋Š” ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„ ์ตœ์ ํ™”์—์„œ ๋‹ค์†Œ ๊ธ‰๊ฒฉํ•œ ์กฐ์ •์ด ์ถ”๊ฐ€๋œ ์˜ํ–ฅ์ด์ง€๋งŒ, ์—ฌ์ „ํžˆ DexRetarget ์ˆ˜์ค€๊ณผ ๋น„์Šทํ•˜๊ฒŒ ์œ ์ง€๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋ฅผ ๋‘๊ณ  โ€œ๋ฆฌํƒ€๊ฒŒํŒ… ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐํ•˜ํ•™์  ์ •ํ•ฉ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜์—ฌ Chamfer ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ณ , ์ดํ›„ ๋ฌผ์ฒด ์ค‘์‹ฌ์˜ ์„ธ๋ฐ€ ์กฐ์ • ๋‹จ๊ณ„์—์„œ ์•ฝ๊ฐ„์˜ ๊ฐ€์†๋„ ์ฆ๊ฐ€(์›€์ง์ž„ ๋ณ€ํ™”)๋ฅผ ๋ฐ›์•„๋“ค์ด๋Š” ๊ท ํ˜• ์žกํžŒ ์ตœ์ ํ™” ์ „๋žตโ€์ด๋ผ๊ณ  ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, 1๋‹จ๊ณ„์—์„œ๋Š” ํ˜•์ƒ์„ ๋งž์ถ”๊ณ  2๋‹จ๊ณ„์—์„œ๋Š” ๋ฌผ๋ฆฌ์  ์ถฉ๋Œ์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ถ„๋ฆฌ ์ตœ์ ํ™” ๋•๋ถ„์—, ์ „์ฒด์ ์œผ๋กœ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ํ๋ฆ„์€ ์ตœ๋Œ€ํ•œ ๋ณด์กดํ•˜๋ฉด์„œ ํ•„์š”ํ•œ ๋ถ€๋ถ„๋งŒ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, DexFlow๊ฐ€ ์ƒ์„ฑํ•œ ๋‹ค์–‘ํ•œ ๊ทธ๋ฆฝ ๋™์ž‘๋“ค์€ ์‹œ๊ฐ์ ์œผ๋กœ๋„ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๋‹ค์–‘ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—๋Š” ์—ฌ๋Ÿฌ ๋ฌผ์ฒด์— ๋Œ€ํ•œ ๋กœ๋ด‡ ์†์˜ ํŒŒ์ง€ ๊ฒฐ๊ณผ๋“ค์„ ๋‚˜์—ดํ•œ ๊ทธ๋ฆผ์ด ํฌํ•จ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ด๋ฅผ ํ†ตํ•ด DexFlow๊ฐ€ ํฐ ๋ฌผ์ฒด๋ถ€ํ„ฐ ์ž‘์€ ๋„๊ตฌ, ์›ํ†ตํ˜• ๋ฌผ์ฒด, ๋ฐ•์Šคํ˜• ๋ฌผ์ฒด ๋“ฑ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๊ทธ๋ฆฝ์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์‚ฌ๋žŒ ์†์˜ ์˜๋„๊ฐ€ ์ž˜ ๋ฐ˜์˜๋˜์–ด, ์˜ˆ๋ฅผ ๋“ค์–ด ๊ธด ๋ง‰๋Œ€ํ˜• ๋ฌผ์ฒด๋Š” ์ง‘๊ฒŒ์†๊ฐ€๋ฝ๊ณผ ์—„์ง€๋กœ ์ง‘๋Š” ๋™์ž‘, ํฐ ์›ํ†ตํ˜• ๋ฌผ์ฒด๋Š” ์†๋ฐ”๋‹ฅ ์ „์ฒด๋กœ ๊ฐ์‹ธ์ฅ๋Š” ๋™์ž‘ ๋“ฑ ๋งฅ๋ฝ์— ๋งž๋Š” ํŒŒ์ง€ ํ˜•ํƒœ๊ฐ€ ๋‚˜์˜ค๋Š” ๊ฒƒ์ด ์ธ์ƒ์ ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์„ฑ์  ๊ฒฐ๊ณผ๋Š” DexFlow์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ธ๊ฐ„ ๊ทธ๋ฆฝ ๋™์ž‘์„ ๋‹ฎ์•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ, ๊ธฐ์กด ์ƒ์„ฑ ๊ธฐ๋ฒ•์—์„œ ์ง€์ ๋œ ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด ์†๋ชจ์–‘ ๋ฌธ์ œ๋ฅผ ํฌ๊ฒŒ ์™„ํ™”์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.

2.5 ๊ฒฐ๋ก  ๋ฐ ์‹œ์‚ฌ์ 

DexFlow๋Š” ์ธ๊ฐ„ ์† ๋ชจ์…˜์„ ๋กœ๋ด‡ ์†์œผ๋กœ ์˜ฎ๊ธฐ๋Š” ์† ํฌ์ฆˆ ๋ฆฌํƒ€๊ฒŒํŒ… ๋ฌธ์ œ์™€, ๋กœ๋ด‡ ์†์˜ ๋ฌผ์ฒด ํŒŒ์ง€ ์ƒํ˜ธ์ž‘์šฉ ๋ฌธ์ œ๋ฅผ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ ์•ˆ์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•œ ํ†ตํ•ฉ ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ธฐ์ˆ ์ ์œผ๋กœ ์ „์—ญ-๊ตญ์†Œ ์ด์ค‘ ๋‹จ๊ณ„ ์ตœ์ ํ™”, ์ ‘์ด‰ ์ƒํƒœ ์ธ์‹ ๋ฐ ์‹œ๊ฐ„์  ์•ˆ์ •ํ™”, ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ ๋“ฑ์˜ ๊ธฐ์—ฌ๋ฅผ ํ†ตํ•ด, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์ด ๊ฐœ๋ณ„์ ์œผ๋กœ ๋‹ค๋ค˜๋˜ ๋ฌธ์ œ๋“ค์„ ํ•œ๊บผ๋ฒˆ์— addressedํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ DexFlow๋Š” ์ •๋Ÿ‰์  ์ง€ํ‘œ์—์„œ ๊ธฐ์กด ๋Œ€๋น„ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ(ํŠนํžˆ ์„ฑ๊ณต๋ฅ  ์•ฝ 7~8๋ฐฐ ํ–ฅ์ƒ, ๊ด€ํ†ต/์ ‘์ด‰ ์˜ค๋ฅ˜ ๊ฐ์†Œ ๋“ฑ)์„ ๋ณด์˜€๊ณ , ์ •์„ฑ์ ์œผ๋กœ๋„ ์ธ๊ฐ„์Šค๋Ÿฌ์šด ๊ทธ๋ฆฝ ๋™์ž‘์„ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ตฌํ˜„ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค. ๋น„๋ก ์ผ๋ถ€ ์ตœ๊ณ  ์„ฑ๋Šฅ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•ด ๋‹จ์ผ ํ”„๋ ˆ์ž„ ์„ฑ๊ณต๋ฅ ๋งŒ ๋†“๊ณ  ๋ณด๋ฉด ์ ˆ๋Œ€๊ฐ’์—์„œ ์•ฝ๊ฐ„ ๋ชจ์ž๋ž„ ์ˆ˜ ์žˆ์œผ๋‚˜, DexFlow๋Š” ์ข…ํ•ฉ์ ์ธ ๊ท ํ˜•๊ณผ ๋ฐ์ดํ„ฐ ํ™œ์šฉ์„ฑ ๋ฉด์—์„œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ–ˆ๋‹ค๊ณ  ํ‰๊ฐ€ํ•  ๋งŒํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ๋ณธ ๋…ผ๋ฌธ์ด ์ œ๊ณตํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ๋กœ๋ด‡ ์† ์กฐ์ž‘ ๋ฐ์ดํ„ฐ์…‹๊ณผ ์ ‘์ด‰ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์€ ํ–ฅํ›„ ์ด ๋ถ„์•ผ ์—ฐ๊ตฌ์ž๋“ค์—๊ฒŒ ์†Œ์ค‘ํ•œ ์ž์›์ด์ž ์•„์ด๋””์–ด์˜ ๊ธฐ๋ฐ˜์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ €์ž๋“ค๋„ ๋…ผ๋ฌธ์—์„œ ํ˜„์žฌ ํ•œ๊ณ„๋กœ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ(์ธ๊ฐ„ ์‹œ์—ฐ)์˜ ์ •๋ฐ€๋„ ๋ฌธ์ œ์™€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์˜ค์ฐจ์— ๋”ฐ๋ฅธ ์ œํ•œ์‚ฌํ•ญ์„ ์–ธ๊ธ‰ํ•˜๋ฉฐ, ์•ž์œผ๋กœ ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ์ง์ ‘ ์‹ ๋ขฐ๋„ ๋†’์€ ์ ‘์ด‰ ์ •๋ณด๋ฅผ ์–ป๋Š” ๋ฐฉํ–ฅ ๋“ฑ ์ถ”๊ฐ€ ์—ฐ๊ตฌ ๊ณผ์ œ๋ฅผ ๋‚จ๊ฒผ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  DexFlow๋Š” ๋กœ๋ด‡ ์†์˜ ์„ฌ์„ธํ•œ ์กฐ์ž‘์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ๊ณผ ๋ชจ๋ธ๋ง์— ์žˆ์–ด์„œ ์ƒˆ๋กœ์šด ์ง€ํ‰์„ ์—ด์—ˆ์œผ๋ฉฐ, ํ–ฅํ›„ ๋กœ๋ด‡ ํ•™์Šต, ํ…”๋ ˆ๋กœ๋ณดํ‹ฑ์Šค, ์ธ๊ฐ„-๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์•ผ์—์„œ ๋‹ค์–‘ํ•˜๊ฒŒ ์‘์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋ฉ๋‹ˆ๋‹ค. ์ „์ฒด์ ์œผ๋กœ DexFlow๋Š” ์† ๊ธฐ๋ฐ˜ ์กฐ์ž‘ ์—ฐ๊ตฌ ์ปค๋ฎค๋‹ˆํ‹ฐ์— ์ •ํ™•์„ฑ, ์ž์—ฐ์Šค๋Ÿฌ์›€, ๋‹ค์–‘์„ฑ์„ ๋ชจ๋‘ ์ถฉ์กฑ์‹œํ‚ค๋Š” ์†”๋ฃจ์…˜์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€ ์˜๋ฏธ์žˆ๋Š” ์„ฑ๊ณผ์ž…๋‹ˆ๋‹ค.

์ฐธ๊ณ  ๋ฌธํ—Œ: DexFlow ๋…ผ๋ฌธ ์›๋ฌธ ๋ฐ ๊ด€๋ จ๋œ ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์„ ์ฐธ์กฐํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Copyright 2024, Jung Yeon Lee