Curieux.JY
  • Post
  • Note
  • Jung Yeon Lee

On this page

  • Brief Review
  • Detail Review
    • 1. ์—ฐ๊ตฌ ๊ฐœ์š” ๋ฐ ๊ธฐ์—ฌ
    • 2. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์† ์ถ”์  ๋ฐฉ๋ฒ•
    • 3. ์ธ๊ฐ„-๋กœ๋ด‡ ์† ๋งคํ•‘ ์ „๋žต ๋ฐ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง
    • 4. ์† ๋ฆฌํƒ€๊ฒŸํŒ… ๋ชจ๋“ˆ ๋™์ž‘ ์›๋ฆฌ์™€ ์ œ์•ฝ์กฐ๊ฑด
    • 5. ์‹คํ—˜ ์„ค์ • ๋ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€
    • 6. ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ต ๋ฐ ๊ธฐ์ˆ ์  ํ•œ๊ณ„

๐Ÿ“ƒDexPilot ๋ฆฌ๋ทฐ

retargeting
vision
Kinematic Motion Retargeting for Contact-Rich Anthropomorphic Manipulations
Published

August 19, 2025

  • Paper Link
  • Project Link
  1. DexPilot์€ ์ €๋น„์šฉ ๋น„์ „ ๊ธฐ๋ฐ˜ ์›๊ฒฉ ์กฐ์ž‘ ์‹œ์Šคํ…œ์œผ๋กœ, ์žฅ๊ฐ‘์ด๋‚˜ ๋งˆ์ปค ์—†์ด ๋งจ์† ์›€์ง์ž„์„ ์‚ฌ์šฉํ•˜์—ฌ 23 DoA์˜ ๋กœ๋ด‡ ํŒ”/์† ์‹œ์Šคํ…œ์„ ์™„๋ฒฝํ•˜๊ฒŒ ์ œ์–ดํ•ฉ๋‹ˆ๋‹ค.
  2. ์‹œ์Šคํ…œ์€ ๋”ฅ๋Ÿฌ๋‹๊ณผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ถ”์ (DART)์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ธ๊ฐ„ ์†์˜ ํฌ์ฆˆ์™€ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ์ถ”์ •ํ•˜๊ณ , ๋น„์„ ํ˜• ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ํ‚ค๋„ค๋งˆํ‹ฑ ๋ฆฌํƒ€๊ฒŸํŒ…์„ ํ†ตํ•ด Allegro hand์˜ ๋™์ž‘์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
  3. DexPilot์€ ๋‹ค์–‘ํ•œ ๋ณต์žกํ•œ ์กฐ์ž‘ ์ž‘์—…์—์„œ ์ธ๊ฐ„ ์‹œ์—ฐ์ž๋ฅผ ํ†ตํ•ด ๋†’์€ ์„ฑ๊ณต๋ฅ ์„ ๋‹ฌ์„ฑํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ˆ™๋ จ๋œ ๋™์ž‘ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ฏธ๋ž˜์˜ ์ž์œจ ์ •์ฑ… ํ•™์Šต ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

Brief Review

๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์ž์œ ๋„(high degree-of-actuation, DoA) ๋กœ๋ด‡ ์†-ํŒ” ์‹œ์Šคํ…œ(Allegro Hand๊ฐ€ ์žฅ์ฐฉ๋œ KUKA LBR iiwa)์„ ์œ„ํ•œ ์ €๋น„์šฉ, Vision Based Teleoperation ์‹œ์Šคํ…œ์ธ DexPilot์„ ์†Œ๊ฐœํ•œ๋‹ค. DexPilot์€ ํŠน๋ณ„ํ•œ ์žฅ๋น„(markerless, glove-free) ์—†์ด ๋งจ์†(bare human hand)์˜ ์›€์ง์ž„์„ ๊ด€์ฐฐํ•˜์—ฌ ๋กœ๋ด‡์„ ์ง์ ‘ ๋ชจ๋ฐฉ ์ œ์–ด(direct imitation)ํ•œ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์ •๊ตํ•œ ํŒŒ์ง€(precision grasp), ๋‹ค์ง€ ์กฐ์ž‘(multi-fingered manipulation), ์ธ-ํ•ธ๋“œ ์กฐ์ž‘(in-hand manipulation) ๋“ฑ ๋‹ค์–‘ํ•œ ๋ณต์žกํ•œ Task๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ•™์Šต์„ ์œ„ํ•œ ๊ณ ์ฐจ์› ์„ผ์„œ ๋ฐ์ดํ„ฐ ๋ฐ ํ–‰๋™ ๋ฐ์ดํ„ฐ(sensorimotor state-action data)๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ ๋ฐ ํ•˜๋“œ์›จ์–ด: ์‹œ์Šคํ…œ์€ KUKA LBR iiwa7 R800 ๋กœ๋ด‡ ํŒ”๊ณผ Wonik Robotics Allegro Hand๋กœ ๊ตฌ์„ฑ๋œ ๋กœ๋ด‡ ์‹œ์Šคํ…œ๊ณผ, ์กฐ์ž‘์ž์˜ ์†์„ ๊ด€์ฐฐํ•˜๋Š” 4๋Œ€์˜ Intel RealSense D415 RGB-D ์นด๋ฉ”๋ผ๋กœ ๊ตฌ์„ฑ๋œ ์ธ๊ฐ„ ์กฐ์ž‘์ž ์˜์—ญ์œผ๋กœ ๋‚˜๋‰œ๋‹ค. Allegro Hand์—๋Š” SynTouch BioTac ์ด‰๊ฐ ์„ผ์„œ์™€ 3M TB641 ๊ทธ๋ฆฝ ํ…Œ์ดํ”„๊ฐ€ ์žฅ์ฐฉ๋˜์–ด ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ์‹ ํ˜ธ(92๊ฐœ)์™€ ๋งˆ์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์‹œ์Šคํ…œ์€ Vision Based Perception, Optimization, Motion Generation, Control ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ์•ฝ 1์ดˆ์˜ Latency๋ฅผ ๊ฐ€์ง„๋‹ค.

ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก :

  1. ํ•ธ๋“œ ํŠธ๋ž˜ํ‚น (Hand Tracking): ์กฐ์ž‘์ž์˜ ์† ์ถ”์ ์€ DART ์™€ Deep Neural Networks์˜ ์กฐํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค.
    • DART: articulated human hand model ([28, 29] ๊ธฐ๋ฐ˜)์„ ์ž…๋ ฅ Point Cloud์— ๋งค์นญํ•˜์—ฌ ์†์˜ Pose์™€ 20๊ฐœ Joint Angle์„ ์—ฐ์†์ ์œผ๋กœ ์ถ”์ ํ•˜๋Š” ๋ชจ๋ธ ๊ธฐ๋ฐ˜(model-based) ์ถ”์ ๊ธฐ์ด๋‹ค. Nonlinear Optimization ๊ธฐ๋ฐ˜์ด๋ฏ€๋กœ ์ •ํ™•ํ•œ ์ดˆ๊ธฐํ™”๊ฐ€ ํ•„์ˆ˜์ ์ด๋ฉฐ, Spurious Local Minima์— ๋น ์ง€๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด Neural Network๋กœ๋ถ€ํ„ฐ Hand Pose Prior์™€ Hand Segmentation ์ •๋ณด๋ฅผ ํ™œ์šฉํ•œ๋‹ค.
    • Neural Networks: DART์˜ ์ดˆ๊ธฐํ™” ๋ฐ ๊ฐ•๊ฑด์„ฑ(robustness) ํ™•๋ณด๋ฅผ ์œ„ํ•ด ๋‘ ๋‹จ๊ณ„๋กœ ํ•™์Šต๋œ Neural Network๊ฐ€ ์‚ฌ์šฉ๋œ๋‹ค.
      • First Phase (with Glove for Annotation): ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์ดˆ๊ธฐ์—๋Š” ์ƒ‰์ƒ ๋ธ”๋กญ(coloured blobs)์ด ๋ถ€์ฐฉ๋œ ์žฅ๊ฐ‘์„ ์ฐฉ์šฉํ•˜๊ณ  ResNet-50 with spatial-softmax ๊ธฐ๋ฐ˜์˜ GloveNet์„ ํ›ˆ๋ จ์‹œ์ผœ RGB ์ด๋ฏธ์ง€์—์„œ ๋ธ”๋กญ์˜ 2D ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•œ๋‹ค. ํŠนํžˆ ์†๋ฐ”๋‹ฅ ๋’ท๋ฉด์˜ 3๊ฐœ ๋ธ”๋กญ์„ ์‚ฌ์šฉํ•˜์—ฌ Hand Pose๋ฅผ ์ถ”์ •ํ•œ๋‹ค. 4๋Œ€ ์นด๋ฉ”๋ผ์˜ ์˜ˆ์ธก ๋ฐ Depth ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ 3D Hand Pose๋ฅผ ์–ป๊ณ  Hand Segmentation์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. DART๋Š” ์ด Segmentation๋œ Point Cloud์— ๋Œ€ํ•ด์„œ๋งŒ ์ตœ์ ํ™”ํ•˜์—ฌ Annotation ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค.
      • Second Phase (Bare Hand Tracking): First Phase์—์„œ ์ƒ์„ฑ๋œ Annotation์„ ์‚ฌ์šฉํ•˜์—ฌ ๋งจ์†(bare hand)์˜ Fused Point Cloud๋ฅผ ์ง์ ‘ ์ฒ˜๋ฆฌํ•œ๋‹ค. PointNet++ ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๊ฐ€ ์‚ฌ์šฉ๋˜๋ฉฐ, ํ…Œ์ด๋ธ” Point ์ œ๊ฑฐ ํ›„ Arm๊ณผ Body๋ฅผ ํฌํ•จํ•œ Point Cloud๋ฅผ ์ž…๋ ฅ๋ฐ›์•„ Hand๋ฅผ Localizeํ•˜๊ณ  Hand Pose ๋ฐ Hand Segmentation(Auxiliary Segmentation Loss ์‚ฌ์šฉ)์„ ์ถ”์ •ํ•œ๋‹ค. ์ด ๋„คํŠธ์›Œํฌ๋Š” ์†์˜ 23๊ฐœ Keypoint(์†๊ฐ€๋ฝ๋ณ„ 4๊ฐœ ๊ด€์ ˆ + ์†๋ฐ”๋‹ฅ ๋’ท๋ฉด 3๊ฐœ)์˜ 3D ์ขŒํ‘œ๋ฅผ ์˜ˆ์ธกํ•˜๋„๋ก ํ›ˆ๋ จ๋œ๋‹ค. Uniform Sub-sampling์œผ๋กœ ์ธํ•œ ์†๊ฐ€๋ฝ Keypoint ์˜ˆ์ธก ์ •ํ™•๋„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ฒซ ๋‹จ๊ณ„์˜ Pose์™€ Segmentation์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์† ์œ„์˜ ํฌ์ธํŠธ๋ฅผ ๋‹ค์‹œ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„(second stage)์—์„œ Keypoint ์˜ˆ์ธก์„ ์ •๋ฐ€ํ™”ํ•œ๋‹ค.
      • JointNet: ์˜ˆ์ธก๋œ 23๊ฐœ Keypoint ์œ„์น˜(23x3 ๋ฒกํ„ฐ)๋ฅผ 20๊ฐœ Joint Angle(์†๊ฐ€๋ฝ ๊ด€์ ˆ)๋กœ ๋งคํ•‘ํ•˜๋Š” 2-layer fully connected network์ธ JointNet์„ ์‚ฌ์šฉํ•˜์—ฌ DART์˜ Joint Prior๋ฅผ ์ œ๊ณตํ•œ๋‹ค.
  2. ์šด๋™ํ•™์  ๋ฆฌํƒ€๊ฒŸํŒ… (Kinematic Retargeting): ์ธ๊ฐ„ ์†์˜ ๊ด€์ ˆ ์›€์ง์ž„์„ Allegro Hand์˜ ๊ด€์ ˆ ์›€์ง์ž„์œผ๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ์ธ๊ฐ„ ์†๊ณผ Allegro Hand๋Š” ์šด๋™ํ•™์ ์œผ๋กœ ๋‹ค๋ฅด๋ฏ€๋กœ, Grasping๊ณผ Manipulation์— ์ค‘์š”ํ•œ Fingertip Task-Space Metrics์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋‘”๋‹ค.
    • ๋น„์šฉ ํ•จ์ˆ˜(Cost Function)๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค: C(q_h, q_a) = \frac{1}{2N}\sum_{i=0} s(d_i)||r_i(q_a) - f(d_i)\hat{r}_i(q_h)||^2 + \gamma||q_a||^2 ์—ฌ๊ธฐ์„œ q_h, q_a๋Š” ๊ฐ๊ฐ ์ธ๊ฐ„ ์†๊ณผ Allegro Hand์˜ ๊ด€์ ˆ ๊ฐ๋„์ด๋ฉฐ, r_i๋Š” ํ•œ ์ขŒํ‘œ๊ณ„(์˜ˆ: ์†๋ฐ”๋‹ฅ)์—์„œ ๋‹ค๋ฅธ ์ขŒํ‘œ๊ณ„(์˜ˆ: ์†๊ฐ€๋ฝ ๋)๊นŒ์ง€์˜ ๋ฒกํ„ฐ์ด๋‹ค. d_i = ||r_i(q_h)||, \hat{r}_i(q_h) = \frac{r_i(q_h)}{||r_i(q_h)||}์ด๋‹ค.
    • s(d_i)๋Š” ์Šค์œ„์นญ ๊ฐ€์ค‘์น˜ ํ•จ์ˆ˜(switching weight function)๋กœ, ์ถ”์  ์˜ค๋ฅ˜๊ฐ€ ์žˆ์„ ๋•Œ ์ •๋ฐ€ ํŒŒ์ง€(precision grasp) ์‹œ ์†๊ฐ€๋ฝ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ณ  Thumb์™€์˜ ์ ‘์ด‰์„ ๊ฐ€๊น๊ฒŒ ํ•˜๋Š” Projection Scheme์— ์‚ฌ์šฉ๋œ๋‹ค. d_i๊ฐ€ ์ž„๊ณ„๊ฐ’ \epsilon๋ณด๋‹ค ์ž‘์„ ๊ฒฝ์šฐ, Primary Finger-Thumb ๋ฒกํ„ฐ์—๋Š” 0, Primary Finger-Primary Finger ๋ฒกํ„ฐ์—๋Š” 400์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค (Table I).
    • f(d_i)๋Š” ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜(distancing function)๋กœ, d_i๊ฐ€ \epsilon๋ณด๋‹ค ํด ๊ฒฝ์šฐ \beta d_i (\beta=1.6)๋กœ ๋น„๋ก€ ์Šค์ผ€์ผ๋งํ•˜๊ณ , ์ž‘์„ ๊ฒฝ์šฐ Primary Finger-Thumb ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋Š” \eta_1 (10^{-4}m), Primary Finger ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋Š” \eta_2 (3 \times 10^{-2}m)๋กœ ๊ฐ•์ œํ•˜์—ฌ ์ตœ์†Œ/์ตœ๋Œ€ ๊ฑฐ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ๋‹ค.
    • \gamma||q_a||^2๋Š” ์ •๊ทœํ™” ํ•ญ(regularization term)์œผ๋กœ, \gamma=2.5 \times 10^{-3}์ด๋ฉฐ Allegro ๊ด€์ ˆ ๊ฐ๋„๋ฅผ 0(์™„์ „ํžˆ ์—ด๋ฆฐ ์†)์œผ๋กœ ์ •๊ทœํ™”ํ•˜์—ฌ ํ•ด์˜ ์ค‘๋ณต์„ ์ค„์ด๊ณ  ๋น„์ •์ƒ์ ์ธ ์ž์„ธ๋ฅผ ๋ฐฉ์ง€ํ•œ๋‹ค.
    • ๋ฒกํ„ฐ r_i๋Š” ๊ฑฐ๋ฆฌ์™€ ๋ฐฉํ–ฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ขŒํ‘œ๊ณ„์˜ Orientation ์ •๋ณด๋„ ํฌํ•จํ•œ๋‹ค. Allegro Hand์˜ Primary Finger distal ๊ด€์ ˆ์€ medial ๊ด€์ ˆ๊ณผ ๋™์ผํ•˜๊ฒŒ ์ œ์•ฝ๋œ๋‹ค.
    • ์ด ๋น„์šฉ ํ•จ์ˆ˜๋Š” NLopt ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ Sequential Least-Squares Quadratic Programming (SLSQP) ์•Œ๊ณ ๋ฆฌ์ฆ˜ [35, 36, 37]์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์†Œํ™”๋œ๋‹ค. Forward Kinematic ๊ณ„์‚ฐ์€ Orocos Kinematics and Dynamics library ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๊ฒฐ๊ณผ๋Š” First-Order Low-Pass Filter๋ฅผ ๊ฑฐ์นœ๋‹ค.
  3. ๋ชจ์…˜ ์ƒ์„ฑ ๋ฐ ์ œ์–ด (Motion Generation and Control):
    • Allegro Palm์˜ Cartesian Pose๋Š” Riemannian Motion Policies (RMPs) [39, 40]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œ์–ด๋œ๋‹ค. RMPs๋Š” Arm์˜ Torque-Level Impedance Controller์— ๋ชฉํ‘œ Joint Trajectory๋ฅผ 200Hz๋กœ ๋ณด๋‚ธ๋‹ค.
    • Kinematically Retargeting๋œ Allegro Angles๋Š” Allegro Hand์˜ Torque-Level Joint Controller์— 30Hz๋กœ ๋ณด๋‚ธ๋‹ค.
    • ๋กœ๋ด‡๊ณผ ์นด๋ฉ”๋ผ ์‹œ์Šคํ…œ ๊ฐ„์˜ ๊ณต๊ฐ„ ์ •๋ ฌ์€ ์ดˆ๊ธฐ ์† ์ž์„ธ(ํ…Œ์ด๋ธ”๊ณผ ํ‰ํ–‰ํ•œ ์™„์ „ํžˆ ์—ด๋ฆฐ ์†)๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ณด์ •ํ•˜์—ฌ ์กฐ์ž‘์ž๊ฐ€ ์ง๊ด€์ ์œผ๋กœ ๋กœ๋ด‡์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค.

์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ: DexPilot ์‹œ์Šคํ…œ์€ Pringles ์บ” ์ •๋ ฌ, ์ปต ์‚ฝ์ž…, ๋‘ ๊ฐœ ํ๋ธŒ ํŒŒ์ง€, ์ง€๊ฐ‘์—์„œ ๋ˆ ๊บผ๋‚ด๊ธฐ ๋“ฑ 15๊ฐ€์ง€ ๋‹ค์–‘ํ•œ Task (Table II, Fig. 1)์— ๋Œ€ํ•ด ๋‘ ๋ช…์˜ ์กฐ์ž‘์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ…Œ์ŠคํŠธ๋˜์—ˆ๋‹ค. ์„ฑ๋Šฅ์€ ํ‰๊ท  ์™„๋ฃŒ ์‹œ๊ฐ„(Mean Completion Time, CT)๊ณผ ์„ฑ๊ณต๋ฅ (Success Rate)๋กœ ์ธก์ •๋˜์—ˆ๋‹ค (Fig. 14, 15). ๊ฒฐ๊ณผ๋Š” ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ๋ถ€์žฌ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค์–‘ํ•œ Task์—์„œ ๋†’์€ ์„ฑ๊ณต๋ฅ ์„ ๋‹ฌ์„ฑํ–ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ณต์žกํ•œ Task ์ˆ˜ํ–‰์€ Bare Hand ๊ด€์ฐฐ๋งŒ์œผ๋กœ๋„ ์ •๊ตํ•œ Skill ์ „๋‹ฌ์ด ๊ฐ€๋Šฅํ•จ์„ ์ž…์ฆํ•œ๋‹ค. Task ์ˆ˜ํ–‰ ์ค‘ ์ˆ˜์ง‘๋œ ํ’๋ถ€ํ•œ Sensorimotor ๋ฐ์ดํ„ฐ(BioTac ์‹ ํ˜ธ ๋“ฑ)๋Š” ํ–ฅํ›„ ๋กœ๋ด‡ ํ•™์Šต์— ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

๋…ผ์˜ ๋ฐ ํ•œ๊ณ„: DexPilot์€ ๋ณต์žกํ•œ Manipulation Task ํ•ด๊ฒฐ์„ ์œ„ํ•œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๊ณ  ์ €๋ ดํ•œ Teleoperation ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•˜๋ฉฐ, ํ•™์Šต์„ ์œ„ํ•œ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํ–ฅํ›„ ๊ฐœ์„  ๋ฐฉํ–ฅ์œผ๋กœ๋Š” Deep Learning ๋ฐœ์ „์„ ํ†ตํ•œ Hand Tracking ์ •ํ™•๋„ ํ–ฅ์ƒ, RGB ๋ฐ์ดํ„ฐ ํ™œ์šฉ, ์ž์œจ์ ์ธ ํž˜ ์กฐ์ ˆ ์ œ์–ด ๊ธฐ๋Šฅ ํ†ตํ•ฉ, ์˜๋„ ์ธ์‹ ๋“ฑ์ด ์ œ์‹œ๋œ๋‹ค. ํ•œ๊ณ„์ ์œผ๋กœ๋Š” ์ œํ•œ์ ์ธ ์ž‘์—… ๊ณต๊ฐ„, Projection Scheme์ด Finger Gaiting์ด๋‚˜ ์ž‘์€ ๋ฌผ์ฒด ๋†“๊ธฐ๋ฅผ ๋ฐฉํ•ดํ•˜๋Š” ๋ฌธ์ œ, ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ๋ถ€์žฌ๋กœ ์ธํ•œ ์ •๋ฐ€ Task(์˜ˆ: NIST Peg-in-hole insertion)์˜ ์–ด๋ ค์›€, ์‹œ์Šคํ…œ Latency, ์กฐ์ž‘์ž ์† ํฌ๊ธฐ/๋ชจ์–‘์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ ๋“ฑ์ด ์–ธ๊ธ‰๋œ๋‹ค. ํŠนํžˆ Peg-in-hole Insertion๊ณผ ๊ฐ™์€ ๊ณ ์ •๋ฐ€ Task๋Š” ํ˜„์žฌ ์‹œ์Šคํ…œ์œผ๋กœ๋„ ์‹œ๋„๋Š” ๊ฐ€๋Šฅํ•˜๋‚˜ ์„ฑ๊ณต๋ฅ ์ด ๋งค์šฐ ๋‚ฎ์•„ ์ถ”๊ฐ€์ ์ธ ๊ฐœ์„ ์ด ํ•„์š”ํ•˜๋‹ค.

์ฃผ์š” Contribution:

  • Markerless, glove-free, ์ „์ ์œผ๋กœ Vision-based์ธ Teleoperation ์‹œ์Šคํ…œ์œผ๋กœ ๊ณ ์ž์œ ๋„ ๋กœ๋ด‡ ์†-ํŒ” ์‹œ์Šคํ…œ์„ ์ง์ ‘ ๋ชจ๋ฐฉ ์ œ์–ดํ•œ๋‹ค.
  • Hand Joint ์ถ”์  ์˜ค๋ฅ˜ ์กด์žฌ ์‹œ์—๋„ ์† ๊ธฐ๊ต์™€ Precision Grasp์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์กดํ•˜๋Š” Novel Cost Function ๋ฐ Projection Scheme for Kinematically Retargeting Human Hand Joints to Allegro Hand Joints.
  • Fine Manipulation๊ณผ Dexterity๋ฅผ ํฌํ•จํ•˜๋Š” ๋‹ค์–‘ํ•œ Task์—์„œ์˜ Teleoperation ์‹œ์Šคํ…œ ์‹œ์—ฐ ๋ฐ ํ‰๊ฐ€.
  • ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ๋ถ€์žฌ์—๋„ ๋†’์€ Task ์„ฑ๊ณต๋ฅ  ๋‹ฌ์„ฑ.

Detail Review

1. ์—ฐ๊ตฌ ๊ฐœ์š” ๋ฐ ๊ธฐ์—ฌ

DexPilot์€ ๊ณ ์ž์œ ๋„(23 DoF)์˜ ๋‹ค์ง€๋Šฅ ๋กœ๋ด‡ ์†โ€“ํŒ” ์‹œ์Šคํ…œ์„ ์ €๋น„์šฉยท์‹œ๊ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ์›๊ฒฉ ์กฐ์ž‘ํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ์ด๋‹ค. ์ „ํ†ต์ ์ธ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ์€ ๊ณ ์ž์œ ๋„ ๋กœ๋ด‡ ์ œ์–ด์‹œ ๊ณ ๊ฐ€์˜ ์„ผ์„œ(๊ธ€๋Ÿฌ๋ธŒ, ๋งˆ์ปค, ๋ชจ์…˜์บก์ฒ˜ ๋“ฑ)๋ฅผ ์š”๊ตฌํ•˜์ง€๋งŒ, DexPilot์€ ์‹ค์ œ ์ธ๊ฐ„์˜ ๋งจ์† ์›€์ง์ž„๋งŒ์œผ๋กœ 23์ž์œ ๋„์˜ Allegro ๋กœ๋ด‡ ์†๊ณผ ๋กœ๋ด‡ ํŒ”์„ ์ง์ ‘ ๋ชจ์‚ฌยท์ œ์–ดํ•œ๋‹ค. ์ฃผ์š” ๊ธฐ์—ฌ๋กœ๋Š” (1) ๋งˆ์ปค๋‚˜ ์žฅ๊ฐ‘ ์—†์ด ์ˆœ์ˆ˜ RGB-D ์นด๋ฉ”๋ผ๋กœ ์ธ๊ฐ„ ์†์„ ์ถ”์ ํ•˜์—ฌ ๋กœ๋ด‡ ์†์— ์ „์‚ฌํ•˜๋Š” ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๊ธ€๋Ÿฌ๋ธŒ-ํ”„๋ฆฌ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ๊ตฌํ˜„, (2) ์† ๋(fingertip) ์œ„์น˜ ๋ฐ ๋ฐฉํ–ฅ์„ ๋ณด์กดํ•˜๋ฉด์„œ ์ธ๊ฐ„ ์† ๊ด€์ ˆ ์ƒํƒœ๋ฅผ Allegro ์† ๊ด€์ ˆ๋กœ ๋งคํ•‘ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋น„์šฉ ํ•จ์ˆ˜ ๋ฐ ํˆฌ์˜(projection) ๊ธฐ๋ฒ• ์ œ์•ˆ, (3) ์ •๋ฐ€ํ•œ ์ง‘๊ธฐ(pinching)์™€ ๋‹ค์ค‘ ๋‹จ๊ณ„ ์กฐ์ž‘์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ๊ณผ์ œ(์ง€ํ ์ถ”์ถœ, ์„œ๋ž ์—ด๊ธฐ, ์•ฝ๋ณ‘ ๊ฐœ๋ด‰ ๋“ฑ)์—์„œ 23DoA ์‹œ์Šคํ…œ ์กฐ์ž‘์„ ์‹œ์—ฐ, (4) ๋‘ ๋ช…์˜ ํŒŒ์ผ๋Ÿฟ์œผ๋กœ ์ง„ํ–‰ํ•œ ์‹คํ—˜์—์„œ ์†๋„ ๋ฐ ์„ฑ๊ณต๋ฅ  ์ง€ํ‘œ๋กœ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€์ด๋‹ค. ์ด ๊ฒฐ๊ณผ ๊ณ ์ž์œ ๋„ ๋กœ๋ด‡ ์กฐ์ž‘์šฉ ๋Œ€์šฉ๋Ÿ‰ ์ƒํƒœยทํ–‰๋™(์ƒํƒœ/์•ก์…˜) ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ–ฅํ›„ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์กฐ์ž‘ ์ •์ฑ… ํ•™์Šต์— ์œ ์šฉํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค.

2. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์† ์ถ”์  ๋ฐฉ๋ฒ•

DexPilot์˜ ํ•˜๋“œ์›จ์–ด๋Š” KUKA LBR iiwa7 ํ˜‘๋™๋กœ๋ด‡ ํŒ”๊ณผ Wonik Allegro ์†์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, Allegro ์† ๋์—๋Š” Biotac ์ด‰๊ฐ ์„ผ์„œ๋ฅผ ์žฅ์ฐฉํ•˜์˜€๋‹ค[9]. ์‚ฌ๋žŒ ํŒŒ์ผ๋Ÿฟ ์˜์—ญ์—๋Š” ๊ฒ€์€์ƒ‰ ์ฒœ์œผ๋กœ ๋ฎ์ธ ํ…Œ์ด๋ธ” ์œ„์— 4๋Œ€์˜ Intel RealSense D415 RGB-D ์นด๋ฉ”๋ผ๊ฐ€ ๋ฐฐ์น˜๋˜์–ด, ์ธ๊ฐ„ ์†์„ ์—ฌ๋Ÿฌ ์‹œ์ ์—์„œ ๊ด€์ฐฐํ•œ๋‹ค. ์‹œ์Šคํ…œ์€ ์„ธ ๊ฐœ์˜ ์ฒ˜๋ฆฌ ์Šค๋ ˆ๋“œ๋กœ ๋ณ‘๋ ฌ ์‹คํ–‰๋œ๋‹ค. ํ•™์Šต ์Šค๋ ˆ๋“œ๋Š” 4๊ฐœ ์นด๋ฉ”๋ผ์˜ ์œตํ•ฉ๋œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋กœ๋ถ€ํ„ฐ ์†์˜ ์ž์„ธ ๋ฐ ๊ด€์ ˆ๊ฐ์„ ์ถ”์ •ํ•˜๋Š” ์‹ ๊ฒฝ๋ง์„ ์‹คํ–‰ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์–ป์€ ์ดˆ๊ธฐ ์ถ”์ •๊ฐ’์„ ํ•˜์œ„ ๋ชจ๋“ˆ์— ์ œ๊ณตํ•œ๋‹ค. ์ถ”์  ์Šค๋ ˆ๋“œ๋Š” DART(Differentiable Articulated Rigid-body Tracker)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ฐ„ ์† ๋ชจ๋ธ์˜ 6์ž์œ ๋„ ์œ„์น˜ ๋ฐ 20๊ฐœ ๊ด€์ ˆ(๊ฐ ์†๊ฐ€๋ฝ๋‹น 4๊ฐœ: 1 abduction, 3 flexion)์˜ ์ž์„ธ๋ฅผ ์ง€์†์ ์œผ๋กœ ์ตœ์ ํ™” ์ถ”์ ํ•œ๋‹ค[11]. ์ด๋•Œ, ์‹ ๊ฒฝ๋ง์ด ์ œ๊ณตํ•œ ์† ์œ„์น˜/๊ด€์ ˆ๊ฐ ์˜ˆ์ธก์ด ์ดˆ๊ธฐ๊ฐ’(prior)์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด ๋กœ์ปฌ ๋ฏธ๋‹ˆ๋งˆ๋กœ ๋น ์ง€๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•œ๋‹ค. ์ œ์–ด ์Šค๋ ˆ๋“œ๋Š” Riemannian Motion Policy(RMP) ๊ธฐ๋ฐ˜์˜ ์ œ์–ด ๋ฐฉ์ •์‹์„ ๊ณ„์‚ฐํ•˜์—ฌ Allegro ์†๋ฐ”๋‹ฅ์˜ ๋ชฉํ‘œ ์œ„์น˜ยท์ž์„ธ์™€ ํŒ” ๋™์ž‘์„ ์ƒ์„ฑํ•œ๋‹ค. ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์—”๋“œ-ํˆฌ-์—”๋“œ ์ง€์—ฐ(latency)์€ ์•ฝ 1์ดˆ ์ •๋„๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค.

์‹œ๊ฐ ๊ธฐ๋ฐ˜ ์† ์ถ”์ ์„ ์œ„ํ•ด DexPilot์€ ๋‘ ๋‹จ๊ณ„์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ DART ์ตœ์ ํ™”๋ฅผ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ํŒŒ์ผ๋Ÿฟ์ด ์ฐฉ์šฉํ•œ ์ปฌ๋Ÿฌ ์žฅ๊ฐ‘(glove)์„ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๋Š”๋‹ค[15]. ์žฅ๊ฐ‘์˜ ์†๊ฐ€๋ฝ ๋๊ณผ ์†๋ฐ”๋‹ฅ์— ์„œ๋กœ ๋‹ค๋ฅธ ์ƒ‰์˜ ์ ์„ ๋ถ€์ฐฉํ•˜๊ณ , 4๋Œ€์˜ RGB ์นด๋ฉ”๋ผ๋กœ ๊ด€์ฐฐํ•œ RGB ์˜์ƒ์„ ResNet-50 ๊ธฐ๋ฐ˜์˜ ํšŒ๊ท€ ๋„คํŠธ์›Œํฌ(GloveNet)๋ฅผ ํ†ตํ•ด ์ƒ‰์ ์˜ 2D ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค[16]. ์ด๋ ‡๊ฒŒ ์–ป์€ 2D ์ขŒํ‘œ์— ๊นŠ์ด(depth)๋ฅผ ๊ฒฐํ•ฉํ•ด 3D ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ๊ทธ๋กœ๋ถ€ํ„ฐ ์†์˜ ํฌ์ฆˆ(์„ธ ์ ์˜ ์œ„์น˜)์™€ ๋ถ„ํ• (segmentation)์„ ๊ตฌํ•œ๋‹ค[17]. ์ด ์ •๋ณด๋ฅผ ์ด์šฉํ•ด DART๊ฐ€ ์† ๋ชจ๋ธ์„ ์„ธ๋ถ„ํ™”(segmented point cloud)์— ๋งž์ถ”์–ด ์ตœ์ ํ™”ํ•˜๋„๋ก ํ•จ์œผ๋กœ์จ, ์ดˆ๊ธฐ์—๋Š” ์žฅ๊ฐ‘์„ ์“ด ์ƒํƒœ์—์„œ ์ •ํ™•ํ•œ ์† ๊ด€์ ˆ๊ฐ ์–ด๋…ธํ…Œ์ด์…˜์„ ์ƒ์„ฑํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์žฅ๊ฐ‘ ์—†์ด ์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. 4๊ฐœ ์นด๋ฉ”๋ผ์˜ ๊นŠ์ด ์˜์ƒ์„ ์œตํ•ฉํ•˜์—ฌ ํ…Œ์ด๋ธ” ํ‰๋ฉด์„ ์ œ๊ฑฐํ•œ ํ›„, ๋‚จ์€ ์†ยทํŒ” ํฌ์ธํŠธํด๋ผ์šฐ๋“œ๋ฅผ PointNet++ ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ์— ์ž…๋ ฅํ•œ๋‹ค. ์ด ๋„คํŠธ์›Œํฌ๋Š” ์† ๋ถ€๋ถ„์„ ๋ถ„๋ฆฌํ•˜๊ณ (์†๋ถ„ํ• ), ์†๋ผˆ์˜ 23๊ฐœ ์ฃผ์š” ๊ด€์ ˆ์ (keypoints; ์†๊ฐ€๋ฝ๋‹น 4๊ฐœ, ์†๋ฐ”๋‹ฅ ํ›„๋ฉด 3๊ฐœ)๋ฅผ 3D ์ขŒํ‘œ๋กœ ํšŒ๊ท€ํ•œ๋‹ค. ์ฒซ ๋‹จ๊ณ„์˜ ์†๋ฐ”๋‹ฅ ์ปฌ๋Ÿฌ ์žฅ๊ฐ‘ ๋ฐฉ์‹์œผ๋กœ ์ƒ์„ฑ๋œ ์–ด๋…ธํ…Œ์ด์…˜์„ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์—ฌ, ์‹ค์ œ ๋งจ์† ๋ฐ์ดํ„ฐ์—์„œ๋„ ์† ๊ด€์ ˆ ํฌ์ฆˆ๋ฅผ ์˜ˆ์ธกํ•œ๋‹ค. ๋˜ํ•œ, 23๊ฐœ ํ‚คํฌ์ธํŠธ๋ฅผ 20์ฐจ์› ๊ด€์ ˆ๊ฐ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•œ JointNet(2์ธต ์™„์ „์—ฐ๊ฒฐ๋ง)๋„ ํ•จ๊ป˜ ํ•™์Šต์‹œ์ผฐ๋‹ค. ์ด ๋”ฅ ๋„คํŠธ์›Œํฌ๋“ค ๋•๋ถ„์— DART ์ถ”์ ์ด ์žฅ๊ธฐ๊ฐ„ ์•ˆ์ •์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜๋ฉฐ, ๊ฒ€์ฆ ์…‹์—์„œ ํ‰๊ท  ํ‚คํฌ์ธํŠธ ์˜ค์ฐจ๋Š” ์•ฝ 9.7mm, ๊ด€์ ˆ๊ฐ ์˜ค์ฐจ๋Š” ์•ฝ 1.33ยฐ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, DexPilot์€ ์นด๋ฉ”๋ผ ํฌ์ธํŠธํด๋ผ์šฐ๋“œโ†’ํ‚คํฌ์ธํŠธโ†’๊ด€์ ˆ๊ฐ ์ถ”์ •โ†’DART ๋ฏธ์„ธ์กฐ์ •์˜ ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์ธ๊ฐ„ ์†์˜ ํฌ์ฆˆ์™€ ๊ด€์ ˆ ์ƒํƒœ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์–ป์–ด๋‚ธ๋‹ค.

3. ์ธ๊ฐ„-๋กœ๋ด‡ ์† ๋งคํ•‘ ์ „๋žต ๋ฐ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง

์ธ๊ฐ„ ์†๊ณผ Allegro ๋กœ๋ด‡ ์†์€ ๊ด€์ ˆ ์ˆ˜, ๊ด€์ ˆ์ถ• ๋ฐฐ์น˜, ์†๊ฐ€๋ฝ ๊ธธ์ด ๋“ฑ์ด ํฌ๊ฒŒ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ๋‹จ์ˆœํ•œ ๋Œ€์‘(mapping)์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. DexPilot์€ ์ •๋ฐ€ ์กฐ์ž‘ ๊ด€์ ์—์„œ ์†๋(fingertip) ์ž‘์—… ๊ณต๊ฐ„(task-space) ์„ ์ตœ์šฐ์„ ์‹œํ•˜์—ฌ ๋‘ ์†์˜ ๋™์ž‘์„ ์—ฐ๊ฒฐํ•œ๋‹ค.

์†๋์„ ์ž‡๋Š” ์œ„์น˜์™€ ๋ฐฉํ–ฅ ์ •๋ณด๊ฐ€ ์ธ๊ฐ„ยท๋กœ๋ด‡ ์†์˜ ์ฃผ์š” ์กฐ์ž‘์„ ๊ฒฐ์ •ํ•œ๋‹ค๊ณ  ๋ณด๊ณ , ์ด๋“ค ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ๋งคํ•‘(cost function)์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ธ๊ฐ„ ์† ์ž์„ธ q_h์™€ Allegro ์† ๊ด€์ ˆ q_a์— ๋Œ€ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ์ •์˜:

C(q_h, q_a) = \frac{1}{2}\sum_{i=1}^N s(d_i)\,|r_i(q_a) - f(d_i)\,\hat{r}_i(q_h)|^2 \;+\; \gamma|q_a|^2,

  • ์—ฌ๊ธฐ์„œ r_i(q)๋Š” ์†๋ฐ”๋‹ฅ(origin)์œผ๋กœ๋ถ€ํ„ฐ i๋ฒˆ์งธ ์†๋๊นŒ์ง€์˜ ๋ฒกํ„ฐ(๋˜๋Š” ์†๊ฐ€๋ฝ ๊ฐ„ ๋ฒกํ„ฐ)๋กœ, ๊ฐ๊ฐ Allegro ์†(r_i(q_a))๊ณผ ์ธ๊ฐ„ ์† ๋ชจ๋ธ(\hat{r}_i(q_h))์˜ ์ž‘์—… ๊ณต๊ฐ„์—์„œ ๊ณ„์‚ฐ๋œ๋‹ค.
  • \hat{r}_i(q_h)=r_i(q_h)/d_i๋Š” ์ •๊ทœํ™”๋œ ์ธ๊ฐ„ ์† ๋ฒกํ„ฐ์ด๋ฉฐ, $d_i=|r_i(q_h)|.
  • s(d_i)๋Š” ๊ฐ€์ค‘์น˜ ํ•จ์ˆ˜๋กœ์„œ ์ธ๊ฐ„ ์†์˜ ์—„์ง€๊ฐ€ i๋ฒˆ์งธ ๋ฒกํ„ฐ(r_i(q_h))์™€ ๊ฐ€๊น๊ฒŒ ์ ‘์ด‰ํ•  ๋•Œ ์†๋ ๊ฐ„ ๊ฑฐ๋ฆฌ์— ๋” ํฐ ์ค‘์š”๋„๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ž„๊ณ„๊ฑฐ๋ฆฌ \epsilon ์ดํ•˜๋กœ ๊ฐ€๊นŒ์›Œ์ง€๋ฉด ์—„์ง€์™€ ์†๋์ด ๋Œ€์‘๋˜๋Š” ๋ฒกํ„ฐ ์ง‘ํ•ฉ S1์ผ ๋•Œ s(d_i)=200, ์†๋ ์Œ(S2)์— ๋Œ€ํ•ด์„œ๋Š” s(d_i)=400 ๋“ฑ์œผ๋กœ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ๋ฐ˜๋ฉด ๊ฑฐ๋ฆฌ๊ฐ€ \epsilon ์ด์ƒ์ด๋ฉด s(d_i)=1์œผ๋กœ ์ž‘๊ฒŒ ์ค€๋‹ค.
  • f(d_i)๋Š” ๊ฑฐ๋ฆฌ ์กฐ์ ˆ ํ•จ์ˆ˜๋กœ์„œ, ๋ณดํ†ต f(d_i)=\beta d_i (์ฆํญ๊ณ„์ˆ˜ \beta=1.6)๋กœ ์†๋ ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ทธ๋Œ€๋กœ ๋ณต์‚ฌํ•˜์ง€๋งŒ, ์ž„๊ณ„๊ฑฐ๋ฆฌ ์ดํ•˜์ผ ๋•Œ ์†๊ฐ€๋ฝ๋ผ๋ฆฌ ๊ฒน์น˜์ง€ ์•Š๋„๋ก ์ผ์ • ๊ฑฐ๋ฆฌ(\eta_1,\eta_2)๋ฅผ ๊ฐ•์ œํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์—„์ง€-์ฃผ์š” ์†๊ฐ€๋ฝ ์‚ฌ์ด๊ฐ€ ๋„ˆ๋ฌด ๊ฐ€๊นŒ์›Œ์ง€๋ฉด \eta_1=0.1\;\mathrm{mm}๋กœ ์ ‘์ด‰ ๊ฑฐ๋ฆฌ๋ฅผ ์œ ์ง€์‹œ์ผœ ํ•€์น˜ ์ง‘๊ธฐ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ์ฃผ์š” ์†๊ฐ€๋ฝ ๊ฐ„์—๋Š” \eta_2=30\;\mathrm{mm}๋กœ ์ผ์ • ๊ฑฐ๋ฆฌ๋ฅผ ํ™•๋ณดํ•œ๋‹ค.
  • ๋งˆ์ง€๋ง‰์œผ๋กœ \gamma|q_a|^2 ํ•ญ(์ •๊ทœํ™” ํ•ญ)์€ Allegro ์†์„ ์™„์ „ํžˆ ํŽผ์นœ ์ƒํƒœ(q_a=0)๋กœ ์œ ๋„ํ•˜์—ฌ ์ค‘๋ณต์„ฑ(redundancy)์„ ์™„ํ™”ํ•˜๊ณ  ๊ธฐ๊ดดํ•œ ์ตœ์†Œํ•ด(์˜ˆ: ์†๊ฐ€๋ฝ์ด ์†๋ฐ”๋‹ฅ์— ํŒŒ๊ณ ๋“œ๋Š” ํ˜„์ƒ)๋ฅผ ๋ฐฉ์ง€ํ•œ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉํ•˜๋Š” ๋ฒกํ„ฐ ์ง‘ํ•ฉ S1, S2๋Š” ํ‘œ I์— ์ •์˜๋œ ๊ฒƒ์ฒ˜๋Ÿผ โ€œ์—„์ง€์™€ ์ฃผ์š” ์†๊ฐ€๋ฝ(๊ฒ€์ง€ยท์ค‘์ง€ยท์•ฝ์ง€) ์‚ฌ์ด ๋ฒกํ„ฐโ€์™€ โ€œ์—„์ง€์™€ ๊ฐ๊ฐ ๋งคํ•‘๋œ ๋‘ ์ฃผ์š” ์†๊ฐ€๋ฝ ์‚ฌ์ด ๋ฒกํ„ฐโ€๋กœ ๊ตฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ, ํ•ด ๊ณต๊ฐ„ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด Allegro ์†์˜ ๊ฒ€์ง€ยท์ค‘์ง€ยท์•ฝ์ง€ ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์›์œ„๊ด€์ ˆ(distal joint)์˜ ๊ฐ๋„๋ฅผ ์ค‘๊ฐ„๊ด€์ ˆ(medial joint)๊ณผ ๊ฐ™๊ฒŒ ๊ณ ์ •ํ•˜๋Š” ์ œ์•ฝ์„ ๋‘์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ์„ค๊ณ„๋œ ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ๋งค ํ”„๋ ˆ์ž„๋งˆ๋‹ค ์ตœ์†Œํ™”ํ•˜๋ฉด ์ธ๊ฐ„ ์†์˜ ์†๋ ๋ฐฐ์น˜์™€ ์œ ์‚ฌํ•œ Allegro ์† ๊ตฌ์„ฑ์ด ์ƒ์„ฑ๋œ๋‹ค.

์ตœ์ ํ™”๋Š” NLopt ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ SLSQP(์ˆœ์ฐจ์  ์ด์ฐจ๊ณ„ํš๋ฒ•) ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์‹ค์‹œ๊ฐ„ ์ˆ˜ํ–‰๋œ๋‹ค. ์ดˆ๊ธฐ ํ”„๋ ˆ์ž„์—๋Š” Allegro ๊ฐ๋„๋ฅผ ๋ชจ๋‘ 0(์™„์ „ ํŽผ์นจ)์œผ๋กœ ์‹œ์ž‘ํ•˜๊ณ , ์ดํ›„ ๋งค ํ”„๋ ˆ์ž„์€ ์ด์ „ ํ”„๋ ˆ์ž„ ํ•ด๋ฅผ ์ดˆ๊ธฐ๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ์†์„ฑ์„ ์œ ์ง€ํ•œ๋‹ค. ์ธ๊ฐ„ ์† ๋ชจ๋ธ๊ณผ Allegro ์†์˜ ์ˆœ๋ฐฉํ–ฅ ๊ธฐ๊ตฌํ•™ ๊ณ„์‚ฐ์—๋Š” Orocos KDL ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋กœ ์–ป์€ Allegro ๊ด€์ ˆ๊ฐ์€ ๊ณ ์ฃผํŒŒ ๋…ธ์ด์ฆˆ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด 1์ฐจ ์ €์—ญ ํ†ต๊ณผ ํ•„ํ„ฐ๋ฅผ ๊ฑฐ์ณ ์ถœ๋ ฅํ•œ๋‹ค[34]. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด ๋ฆฌํƒ€๊ฒŸํŒ… ๋ชจ๋“ˆ์€ ์ธ๊ฐ„ ํŒŒ์ผ๋Ÿฟ์ด ์†์„ ๊ตฌ๋ถ€๋ฆฌ๊ฑฐ๋‚˜ ์—„์ง€์™€ ์†๊ฐ€๋ฝ ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋ฅผ ์กฐ์ ˆํ•  ๋•Œ, ๊ทธ ์†๋ ๋™์ž‘์ด ๋กœ๋ด‡ ์†์—์„œ๋„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์žฌํ˜„๋˜๋„๋ก ๋™[35].

4. ์† ๋ฆฌํƒ€๊ฒŸํŒ… ๋ชจ๋“ˆ ๋™์ž‘ ์›๋ฆฌ์™€ ์ œ์•ฝ์กฐ๊ฑด

DexPilot์˜ ๋ฆฌํƒ€๊ฒŸํŒ… ๋ชจ๋“ˆ์€ ์ถ”์  ์Šค๋ ˆ๋“œ ๋‚ด๋ถ€์—์„œ ์ž‘๋™ํ•˜๋ฉฐ, ์ธ๊ฐ„ ์† ์ถ”์  ๊ฒฐ๊ณผ๋ฅผ Allegro ์† ์ œ์–ด ๋ช…๋ น์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ์—”์ง„์ด๋‹ค. ๋งค ์ฃผ๊ธฐ๋งˆ๋‹ค ์•ž์„œ ๊ณ„์‚ฐ๋œ ์ธ๊ฐ„ ์† ๊ด€์ ˆ๊ฐ์„ ์ž…๋ ฅ์œผ๋กœ ํ•˜์—ฌ ์œ„์˜ ๋น„์šฉ ํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉฐ, ์ด๋•Œ s(d_i)๋‚˜ f(d_i) ๋“ฑ์˜ ๊ธฐ๋ฒ•์œผ๋กœ ์—„์ง€-๊ฒ€์ง€ ๊ฐ„ ํ”ฝ์Šค์ณ ๋™์ž‘์„ ๊ฐ•์ œํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ง€ํ๋ฅผ ํ•€์น˜ํ•  ๋•Œ์™€ ๊ฐ™์ด ์—„์ง€์™€ ๊ฒ€์ง€ ์‚ฌ์ด ๊ฑฐ๋ฆฌ๊ฐ€ ์ž‘์•„์ ธ d_i<\epsilon์ด ๋˜๋ฉด ์†๋ ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์œ ์ง€ํ•˜๋„๋ก f(d_i)๊ฐ€ ์ž‘์•„์ง€๋ฉฐ, ๋™์‹œ์— ๊ฐ€์ค‘์น˜ s(d_i)๊ฐ€ ์ปค์ ธ ํ•ด๋‹น ์†๋ ๋ฒกํ„ฐ ํ•ญ์ด ๋น„์šฉ์— ํฌ๊ฒŒ ๋ฐ˜์˜๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํˆฌ์˜(projection) ๊ธฐ๋ฒ•์€ ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ ์ถ”์ ์˜ ์˜ค์ฐจ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ •ํ™•ํ•œ ํ•€์น˜ ์ž์„ธ๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์ง€๋งŒ, ํ›„์ˆ ํ•  ์ž‘์€ ๋ฌผ์ฒด ๋†“๊ธฐ ๋“ฑ์˜ ์ƒํ™ฉ์—์„œ๋Š” ์†๊ฐ€๋ฝ์„ ๋„ˆ๋ฌด ์˜ค๋ž˜ ์œ ์ง€ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ถ€์ž‘์šฉ๋„ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ฆฌํƒ€๊ฒŸํŒ… ์ตœ์ ํ™”๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‹คํ–‰๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ, ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ณ  ์†”๋ฃจ์…˜์˜ ์—ฐ์†์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ์—ฌ๋Ÿฌ ์ œ์•ฝ์กฐ๊ฑด๋„ ์ ์šฉ๋œ๋‹ค. ๋จผ์ € \gamma|q_a|^2 ์ •๊ทœํ™” ํ•ญ์„ ํ†ตํ•ด ํ•ด ๊ณต๊ฐ„์˜ ์ค‘๋ณต์„ฑ์„ ์–ต์ œํ•˜๋ฉฐ, ๋™์ผํ•œ ํšจ๊ณผ๋กœ ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๊ฒ€์ง€ยท์ค‘์ง€ยท์•ฝ์ง€์˜ distal=medial ๊ณ ์ • ์ œ์•ฝ๋„ ๋„์ž…ํ•œ๋‹ค. ์ด์™€ ํ•จ๊ป˜, ์ตœ์ ํ™” ์ดˆ๊ธฐ๊ฐ’์„ ์ด์ „ ๊ฒฐ๊ณผ๋กœ ์„ค์ •ํ•˜์—ฌ ์—ฐ์‚ฐ ๋น„์šฉ๊ณผ ์ง„๋™์„ ์™„ํ™”ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋กœ๋ด‡๊ณผ ์นด๋ฉ”๋ผ ์ขŒํ‘œ๊ณ„ ์ •ํ•ฉ(calibration)์„ ํ†ตํ•ด ์›ํ•˜๋Š” ์ดˆ๊ธฐ ์† ์ž์„ธ(ํŽผ์นœ ์†, ์†๋ฐ”๋‹ฅ ํ‰ํ–‰)๋ฅผ ์‹œ์Šคํ…œ์— ๋งž์ถ”์–ด ํŒŒ์ผ๋Ÿฟ์˜ ์†๊ณผ ๋กœ๋ด‡ ์†์ด ์ผ์น˜ํ•˜๋„๋ก ์„ค์ •ํ•œ๋‹ค[39]. ์ข…ํ•ฉํ•˜๋ฉด, DexPilot์˜ ๋ฆฌํƒ€๊ฒŸํŒ… ๋ชจ๋“ˆ์€ ๋น„์„ ํ˜• ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์ด๋ฉฐ, ์†๋ ์œ„์น˜ยท๋ฐฉํ–ฅ ์ž‘์—… ๊ณต๊ฐ„์„ ๋ณด์กดํ•˜๊ธฐ ์œ„ํ•œ ๋น„์šฉ ํ•จ์ˆ˜์— ์˜ํ•ด ์ธ๊ฐ„ ์†๋™์ž‘์„ Allegro ๊ด€์ ˆ๊ฐ’์œผ๋กœ ๋ณ€[40]. ์ถ”๊ฐ€์ ์ธ ํ•„ํ„ฐ๋ง๊ณผ ์ œ์•ฝ์„ ํ†ตํ•ด ๋ถ€๋“œ๋Ÿฝ๊ณ  ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํƒ€๋‹นํ•œ ์›€์ง์ž„์„ ๋ณด์žฅํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„ ํŒŒ์ผ๋Ÿฟ์˜ ์† ์ œ์Šค์ฒ˜๋Š” ์ •๊ตํ•˜๊ฒŒ ๋กœ๋ด‡ ์†์œผ๋กœ ๋ณต์ œ๋œ๋‹ค.

5. ์‹คํ—˜ ์„ค์ • ๋ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€

DexPilot ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์€ ๋‹ค์–‘ํ•œ ์กฐ์ž‘ ๊ณผ์ œ(task)์—์„œ ์ธก์ •๋˜์—ˆ๋‹ค. ์‚ฌ์šฉ๋œ ์‹คํ—˜ ์žฅ๋น„๋Š” ์•ž์„œ ์„ค๋ช…ํ•œ KUKA iiwa7+Allegro ์†, 4๋Œ€์˜ Intel RealSense D415 ์นด๋ฉ”๋ผ์ด๋‹ค[9]. ์‹คํ—˜์—์„œ ํŒŒ์ผ๋Ÿฟ(์กฐ์ข…์‚ฌ)์€ ํ…Œ์ด๋ธ” ์œ„์—์„œ ์ •ํ•ด์ง„ ๋ฌผ์ฒด๋ฅผ ์กฐ์ž‘ํ•ด์•ผ ํ–ˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ณผ์ œ๋Š” ์ด 15๊ฐ€์ง€๊ฐ€ ์ œ์‹œ๋˜์—ˆ๋‹ค(ํ‘œ II ์ฐธ์กฐ). ์—ฌ๊ธฐ์—๋Š” ๋‹จ์ˆœ ๋ฌผ์ฒด ์˜ฎ๊ธฐ๊ธฐ(pick-and-place)๋ถ€ํ„ฐ, ๋™์ „ ๋‚ด์ง€ ์ง€ํ๋ฅผ ์ง€๊ฐ‘์—์„œ ๊บผ๋‚ด๊ธฐ(๊ทธ๋ฆผ 11), ์„œ๋ž ์—ด๊ธฐ ๋ฐ ํ‹ฐ๋ฐฑ ๊บผ๋‚ด๊ธฐ(๊ทธ๋ฆผ 12), ๋•…์ฝฉํ†ต ๋šœ๊ป‘ ํ’€๊ธฐ(๊ทธ๋ฆผ 13) ๊ฐ™์€ ๋‹ค๋‹จ๊ณ„ ์ž‘์—…๋“ค์ด ํฌํ•จ.

๊ฐ ๊ณผ์ œ๋งˆ๋‹ค ํŒŒ์ผ๋Ÿฟ 2๋ช…์ด 5ํšŒ ์—ฐ์† ์‹œ๋„ํ•˜๋ฉฐ ์„ฑ๊ณต๋ฅ ์„ ์ธก์ •ํ–ˆ๊ณ , ์™„๋ฃŒ ์‹œ๊ฐ„(mean completion time)๋„ ๊ธฐ๋กํ–ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, DexPilot์€ ๋Œ€๋ถ€๋ถ„ ๊ณผ์ œ์—์„œ ๋†’์€ ์„ฑ๊ณต๋ฅ ์„ ๋ณด์˜€๋‹ค(Fig. 15). ํŠนํžˆ ๋‹จ์ˆœ ํ”ผํ‚น/ํ”Œ๋ ˆ์ด์Šค ์ž‘์—…์ด๋‚˜ ๋น„๊ต์  ํฐ ๋ฌผ์ฒด ์กฐ์ž‘ ์ž‘์—…๋“ค์€ ๋Œ€๋ถ€๋ถ„ ์„ฑ๊ณต๋ฅ  90โ€“100%์— ๋‹ฌํ–ˆ๋‹ค. ํ‰๊ท  ์™„๋ฃŒ ์‹œ๊ฐ„์€ ๊ณผ์ œ ๋‚œ์ด๋„์™€ ๋ณต์žก๋„์— ๋”ฐ๋ผ ๋‹ค์–‘ํ–ˆ๋Š”๋ฐ, ๋ฉ€ํ‹ฐ์Šคํ… ์ž‘์—…(์˜ˆ: ์„œ๋ž ์† ๋ฌผ๊ฑด ๊บผ๋‚ด๊ธฐ)์ผ์ˆ˜๋ก ์ˆ˜ ๋ถ„์ด ์†Œ์š”๋˜์—ˆ๋‹ค[41]. ์ „๋ฐ˜์ ์œผ๋กœ ์‹œ์Šคํ…œ์€ ์ •๋ฐ€ ์ง‘๊ธฐยทํŒŒ์ง€, ๋‹ค์ง€ ๊ฐ„ ์กฐ์ž‘, ๋น„ํŒŒ์ง€(non-prehensile) ๋™์ž‘ ๋“ฑ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ถฉ๋ถ„ํ•œ ์œ ์—ฐ์„ฑ๊ณผ ์•ˆ์ •์„ฑ์„ ๋ณด์˜€๋‹ค[42]. ์ •์„ฑ์  ํ‰๊ฐ€์—์„œ๋„ DexPilot์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๊ทธ๋ฆผ 11์˜ ์ง€๊ฐ‘ ๊ณผ์ œ์—์„œ ํŒŒ์ผ๋Ÿฟ์€ ์ง€ํ๋ฅผ ์†๊ฐ€๋ฝ ์‚ฌ์ด์— ํ•€์น˜ํ•œ ์ฑ„๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ์ง€๊ฐ‘ ๋ฐ”๊นฅ์œผ๋กœ ๋„์ง‘์–ด๋ƒˆ์œผ๋ฉฐ, ์ด๋•Œ ๋กœ๋ด‡ ์†๋„ ์ง€ํ๋ฅผ ๋†“์น˜์ง€ ์•Š๊ณ  ์œ ์ง€ํ–ˆ๋‹ค[43]. ๊ทธ๋ฆผ 12์—์„œ๋Š” ์„œ๋ž์„ ์—ด๊ณ  ํ‹ฐ๋ฐฑ์„ ์žก์•„ ๋‹น๊ธฐ๊ธฐ ์œ„ํ•œ ์†๊ฐ€๋ฝ์˜ ํšŒ์ „ ๋ฐ ์ ‘์ด‰ ๋™์ž‘์ด ๋ช…ํ™•ํžˆ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ๋ฆผ 13์˜ ๋•…์ฝฉํ†ต ๋šœ๊ป‘ ๊ณผ์ œ์—์„œ๋Š” ๋šœ๊ป‘์„ ๋ฐ˜๋ณต ํšŒ์ „์‹œํ‚ค๋Š” ๋™์ž‘์ด ๋กœ๋ด‡์—๋„ ๊ทธ๋Œ€๋กœ ์ „๋‹ฌ๋˜์—ˆ๋‹ค[44]. ์ด์ฒ˜๋Ÿผ ์ž‘์€ ๋ฌผ์ฒด๋ฅผ ์ง‘๊ฑฐ๋‚˜ ๋Œ๋ฆฌ๋Š” ์ •๋ฐ€ ๋™์ž‘ ๋ฟ ์•„๋‹ˆ๋ผ, ๋‘ ์†๊ฐ€๋ฝ์œผ๋กœ ๋ฌผ์ฒด๋ฅผ ์žก์€ ์ƒํƒœ์—์„œ ๋‚จ์€ ์†๊ฐ€๋ฝ์„ ์ด์šฉํ•ด ์ถ”๊ฐ€ ์กฐ์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณตํ•ฉ ์กฐ์ž‘(compound manipulation)๋„ ๋ชจ๋‘ ์‚ฌ๋žŒ์ด ํ–‰ํ•˜๋“ฏ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค[42].

๊ทธ๋Ÿฌ๋‚˜ ์ž‘์€ ๋ฌผ์ฒด๋ฅผ ๋‹ค๋ฃจ๋Š” ์ž‘์—…์—์„œ๋Š” ํ•œ๊ณ„๋„ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋ธ”๋ก(pick blocks small)์ด๋‚˜ ์ปจํ…Œ์ด๋„ˆ ์† ๋ฌผ์ฒด ๋ฝ‘๊ธฐ(Container) ๋“ฑ์˜ ์ž‘์—…์€ ์™„๋ฃŒ ์‹œ๊ฐ„์ด ๊ธธ๊ฑฐ๋‚˜ ์„ฑ๊ณต๋ฅ ์ด ๋‚ฎ์•˜๋‹ค. ํŠนํžˆ ์ž‘์€ ๋ธ”๋ก์„ ์ฅ์—ˆ๋‹ค๊ฐ€ ๋†“๋Š” ๊ณผ์ •์—์„œ, ์•ž์„œ ์„ค๋ช…ํ•œ ํˆฌ์˜ ๊ธฐ๋ฒ•์ด ์†๊ฐ€๋ฝ ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ•ํ•˜๊ฒŒ ์กฐ์ ˆํ•˜์—ฌ ๋ฌผ์ฒด๋ฅผ ๋Šฆ๊ฒŒ ๋†“๊ฒŒ ๋งŒ๋“ค๊ฑฐ๋‚˜ ์†๊ฐ€๋ฝ์ด ๊ฐ„์„ญํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ–ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ž‘์€ ๋ธ”๋ก ์˜ฎ๊ธฐ๊ธฐ ๊ณผ์ œ์˜ ๊ฒฝ์šฐ ์„ฑ๊ณต๋ฅ ์ด ์ƒ๋Œ€์ ์œผ๋กœ ํ˜„์ €ํžˆ ๋‚ฎ์•˜๊ณ , ์™„๋ฃŒ ์‹œ๊ฐ„์ด ๋งค์šฐ ๊ธธ์–ด์กŒ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ ์žฅ๊ฐ‘ ๊ธฐ๋ฐ˜ ์ถ”์  ๋ฐ์ดํ„ฐ์˜ ๋ถ€์ •ํ™•์„ฑ์ด๋‚˜ ํˆฌ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐ์ •์— ๊ธฐ์ธํ•œ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋œ๋‹ค.

6. ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ต ๋ฐ ๊ธฐ์ˆ ์  ํ•œ๊ณ„

DexPilot์€ ๊ธ€๋Ÿฌ๋ธŒยท๋งˆ์ปค๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์ˆœ์ˆ˜ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์ด๋ผ๋Š” ์ ์—์„œ ๋…์ฐฝ์ ์ด๋‹ค. ๊ธฐ์กด ์ƒ์šฉ ์‹œ์Šคํ…œ๋“ค(์˜ˆ: CyberGlove, HaptX)์€ ๋†’์€ ์ •ํ™•๋„์˜ ๊ด€์ ˆ ์ถ”์ •๊ณผ ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜์ง€๋งŒ, ์žฅ๋น„ ๋น„์šฉ๊ณผ ๋ถ€ํ”ผ๊ฐ€ ํฌ๊ณ  ์‚ฌ์šฉ์ž์˜ ์ž์œ ๋กœ์šด ์›€์ง์ž„์„ ์ œํ•œํ•œ๋‹ค. ๋ฐ˜๋ฉด DexPilot์€ ์ €๋ ดํ•œ RGB-D ์นด๋ฉ”๋ผ ๋„คํŠธ์›Œํฌ๋งŒ์œผ๋กœ 23DoF ์ œ์–ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๊ณ , ์ด๋Š” ์ข…๋ž˜์˜ ๊ธ€๋Ÿฌ๋ธŒ๋‚˜ ๋ชจ์…˜์บก์ฒ˜ ์—†์ด ๋ณต์žก ์กฐ์ž‘์„ ์ˆ˜ํ–‰ํ•œ ์‚ฌ๋ก€๋กœ๋Š” ๋“œ๋ฌผ๋‹ค. ๊ธฐ์กด ํ•™์ˆ  ์—ฐ๊ตฌ์™€ ๋น„๊ตํ•ด ๋ณด๋ฉด, Li ๋“ฑ์€ ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ์„€๋„์šฐ ํ•ธ๋“œ(Shadow Hand) ๊ด€์ ˆ๊ฐ์„ ์ถ”์ •ํ•˜์˜€์œผ๋‚˜ ์‹œ์Šคํ…œ ์ „์ฒด ์ ์šฉ๊ณผ ์ •๋ฐ€ ์ง‘๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. Antotsiou ๋“ฑ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ƒ์˜ ๊ฐ„๋‹จํ•œ ์กฐ์ž‘ ์ž‘์—…๋งŒ ๋ณด์˜€๋˜ ๋ฐ˜๋ฉด, DexPilot์€ ์‹ค์ œ ๋ฌผ๋ฆฌ์  ํ™˜๊ฒฝ์—์„œ ์†๋ ์ ‘์ด‰๊ณผ ์—ฐ๊ด€๋œ ๋ณต์žก ์ž‘์—…์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค[47][48]. ์ด์ฒ˜๋Ÿผ DexPilot์€ ์‹œ๊ฐ-๋ชจ๋ธ ์ถ”์ , ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ๋ฆฌํƒ€๊ฒŸํŒ…, ์ž„ํ”ผ๋˜์Šค ์ œ์–ด๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ํ˜„์žฅ์ž‘์—…์— ํ•„์š”ํ•œ ์ˆ˜์ค€์˜ ์กฐ์ž‘ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค๋Š” ์ ์—์„œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์‹œํ–ˆ๋‹ค.

๊ทธ๋Ÿผ์—๋„ ๋ช‡ ๊ฐ€์ง€ ๊ธฐ์ˆ ์  ํ•œ๊ณ„๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. - ์ฒซ์งธ, ๊ด€์ฐฐ ์˜์—ญ(workspace)์ด ์นด๋ฉ”๋ผ ๋ฒ”์œ„๋กœ ์ œํ•œ๋˜์–ด ์žˆ์–ด ๋„“์€ ๊ณต๊ฐ„์—์„œ์˜ ์กฐ์ž‘์—๋Š” ๋ถ€์ ํ•ฉํ•˜๋‹ค[49]. ์‹คํ—˜์—์„œ๋Š” ์นด๋ฉ”๋ผ๊ฐ€ ๊ด€์ ˆ ๊ฑฐ๋ฆฌ 1m ์ด๋‚ด์—์„œ ์ข‹์€ ํ’ˆ์งˆ์„ ๋ณด์˜€์œผ๋‚˜, ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋ฉด ๊นŠ์ด ์„ผ์‹ฑ ์ •ํ™•๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง„๋‹ค. - ๋‘˜์งธ, ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฆฌํƒ€๊ฒŸํŒ… ํˆฌ์˜ ๊ธฐ๋ฒ•์˜ ๋ถ€์ž‘์šฉ์ด๋‹ค. ์—„์ง€-๊ฒ€์ง€ ํ•€์น˜ ์œ ์ง€ ์‹œ ์žก์€ ๋ฌผ์ฒด๋ฅผ ๋Šฆ๊ฒŒ ๋†“๊ฑฐ๋‚˜ ์†๊ฐ€๋ฝ๋ผ๋ฆฌ ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ž‘์€ ๋ฌผ์ฒด ์ž‘์—…์—์„œ ํšจ์œจ์„ ๋–จ์–ด๋œจ๋ฆฐ๋‹ค. ํ˜„์žฌ๋Š” ์ด ๊ธฐ๋Šฅ์„ ์˜ต์…˜์œผ๋กœ ๋Œ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€์œผ๋‚˜, ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์† ์ถ”์  ์ •ํ™•๋„๋ฅผ ๋†’์—ฌ ์ด๋Ÿฌํ•œ ๋ณด์ •์ด ํ•„์š” ์—†๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค. - ์…‹์งธ, ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ๋ถ€์žฌ๋กœ ์ธํ•ด ๋ฏธ์„ธ ์กฐ์ž‘์ด ์–ด๋ ต๋‹ค. DexPilot์—๋Š” ์ด‰๊ฐ ์„ผ์„œ๊ฐ€ ์žˆ์–ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋กํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ํŒŒ์ผ๋Ÿฟ์—๊ฒŒ๋Š” ํž˜/์ด‰๊ฐ ์ •๋ณด๊ฐ€ ๋Œ์•„๊ฐ€์ง€ ์•Š๋Š”๋‹ค. ์ด๋กœ ์ธํ•ด ๋ฌผ์ฒด๊ฐ€ ๋ฏธ๋„๋Ÿฌ์งˆ ๋•Œ ์ง๊ด€์ ์œผ๋กœ ๊ฐ์ง€ํ•˜๊ธฐ ์–ด๋ ค์›Œ ์กฐ์ž‘ ์‹คํŒจ์œจ์ด ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค. ํ–ฅํ›„ ์ด‰๊ฐ ํ”ผ๋“œ๋ฐฑ ์ „๋‹ฌ์ด๋‚˜ ๋ฐ˜์ž๋™ ํž˜ ์ œ์–ด(์žก๊ธฐ ๊ฐ•๋„ ์ž๋™ ์กฐ์ ˆ) ๊ธฐ์ˆ ์„ ๊ฒฐํ•ฉํ•œ๋‹ค๋ฉด ์ด ๋ถ€๋‹ด์„ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. - ๋„ท์งธ, ์ถ”์  ๋ฐ ์ œ์–ด ์ง€์—ฐ์ด๋‹ค. ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์‘๋‹ต ์ง€์—ฐ์€ ์•ฝ 1์ดˆ์ด๋ฉฐ, RMP ์ œ์–ด์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹๊ณผ ๋„คํŠธ์›Œํฌ ์ธํผ๋Ÿฐ์Šค ์ง€์—ฐ์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณ ์ •๋ฐ€ ์‚ฝ์ž… ์ž‘์—…(์˜ˆ: ํŽ˜๊ทธ-์ธ-ํ™€)์€ ์•„์ง ์™„๋ฒฝํžˆ ์ˆ˜ํ–‰๋˜์ง€ ๋ชปํ–ˆ๋‹ค. ์‹ค์ œ๋กœ NIST ์‚ฝ์ž… ๊ณผ์ œ๋ฅผ ์‹œ๋„ํ–ˆ์ง€๋งŒ, ๋งค์šฐ ํ˜‘์†Œํ•œ ๊ฐ„๊ฒฉ(0.1mm)์—์„œ๋Š” ์„ฑ๊ณต๋ฅ ์ด 10% ์ดํ•˜๋กœ ์ €์กฐํ–ˆ๋‹ค[52]. ์ด๋Š” ์นด๋ฉ”๋ผ ํ•ด์ƒ๋„, ์† ์ถ”์  ์ •๋ฐ€๋„, ์ œ์–ด ์‘๋‹ต ์†๋„ ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•œ ๊ฒฐ๊ณผ๋กœ, ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋” ์ •๋ฐ€ํ•œ ์ถ”์ ๊ณผ ์ž๋™ ์ œ์–ด ๋ณด์กฐ ๊ธฐ๋Šฅ์ด ํ•„์š”ํ•˜๋‹ค[52].

์ข…ํ•ฉํ•˜๋ฉด, DexPilot์€ ์ €๋น„์šฉ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹์œผ๋กœ ๊ณ ์ž์œ ๋„ ๋กœ๋ด‡ ์†์„ ์กฐ์ž‘ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ ํš๊ธฐ์ ์ธ ์‹œ์Šคํ…œ์ด์ง€๋งŒ, ์นด๋ฉ”๋ผ ๊ด€์ธก ๋ฒ”์œ„, ์† ์ถ”์  ์ •ํ™•๋„, ์ด‰๊ฐ ๋ถ€์žฌ ๋“ฑ ์‹ค์ œ ํ™œ์šฉ ์‹œ ๊ณ ๋ คํ•ด์•ผ ํ•  ํ•œ๊ณ„์ ๋“ค๋„ ๋™์‹œ์— ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค[53]. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋“ค์„ ๊ฐœ์„ ํ•˜๋ฉด ์•ž์œผ๋กœ ๋ณด๋‹ค ์ •๊ตํ•œ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜๊ณผ ๋กœ๋ด‡ ํ•™์Šต ์‘์šฉ์— ํฐ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

Copyright 2024, Jung Yeon Lee