Curieux.JY
  • JungYeon Lee
  • Post
  • Projects
  • Note

On this page

  • ๐Ÿ” Ping Review
  • ๐Ÿ”” Ring Review
    • 1์žฅ: ๋Œ€์นญ์„ฑ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?
      • ๐Ÿชž ๊ฑฐ์šธ ์•ž์—์„œ ์ƒ๊ฐํ•ด๋ณด๊ธฐ
      • ๐ŸŒ ์™œ ์ด๊ฒŒ ๋กœ๋ด‡์—๊ฒŒ ์ค‘์š”ํ• ๊นŒ?
    • 2์žฅ: ๊ตฐ(็พค, Group)์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?
      • ๐ŸŽฎ ๋ณ€ํ™˜๋“ค์˜ ๊ฒŒ์ž„
      • ๐Ÿ“ฆ ์‹ค์ œ ์˜ˆ์‹œ๋“ค
    • 3์žฅ: SO(3)์™€ SE(3) โ€” ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ๋Š” 3์ฐจ์› ์„ธ๊ณ„
      • ๐Ÿ”„ SO(3): 3์ฐจ์› ํšŒ์ „์˜ ์„ธ๊ณ„
      • ๐Ÿšถ SE(3): ํšŒ์ „ + ์ด๋™์˜ ์„ธ๊ณ„
      • ๐Ÿค” ์™œ SE(3)๊ฐ€ ๋กœ๋ด‡์—๊ฒŒ ์ค‘์š”ํ• ๊นŒ?
    • 4์žฅ: ๋“ฑ๋ณ€์„ฑ(Equivariance)๊ณผ ๋ถˆ๋ณ€์„ฑ(Invariance)
      • ๐ŸŽฏ ํ•ต์‹ฌ ๊ฐœ๋…: ๋ณ€ํ™˜์— ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”๊ฐ€?
      • ๐Ÿ–ผ๏ธ ๊ทธ๋ฆผ์œผ๋กœ ์ดํ•ดํ•˜๊ธฐ
      • ๐Ÿ“ ์ˆ˜ํ•™์ ์œผ๋กœ ๋” ์ •ํ™•ํ•˜๊ฒŒ
    • 5์žฅ: ๋ฆฌ ๊ตฐ(Lie Group)๊ณผ ๋ฆฌ ๋Œ€์ˆ˜(Lie Algebra)
      • ๐ŸŒŠ ์—ฐ์†์ ์ธ ๋ณ€ํ™˜์˜ ์„ธ๊ณ„
      • ๐Ÿงฎ ๋ฆฌ ๋Œ€์ˆ˜: ๋ณ€ํ™”์˜ โ€œ์†๋„โ€
      • ๐Ÿ”„ SO(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜: \mathfrak{so}(3)
      • ๐ŸŒ‰ ์ง€์ˆ˜ ์‚ฌ์ƒ: ๋ฆฌ ๋Œ€์ˆ˜์—์„œ ๋ฆฌ ๊ตฐ์œผ๋กœ
      • ๐Ÿ”„ SE(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜: \mathfrak{se}(3)
    • 6์žฅ: ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ์„ค๊ณ„
      • ๐Ÿง  ์™œ ์ผ๋ฐ˜ ์‹ ๊ฒฝ๋ง์€ ๋Œ€์นญ์„ฑ์„ ์ดํ•ด ๋ชปํ• ๊นŒ?
      • ๐Ÿ”ง ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด
      • ๐Ÿ“Š ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ SE(3)-๋“ฑ๋ณ€์„ฑ
      • ๐Ÿ”ฌ ํ…์„œ์žฅ ์‹ ๊ฒฝ๋ง (Tensor Field Networks)
      • ๐Ÿ”— ๋ฉ”์‹œ์ง€ ํŒจ์‹ฑ๊ณผ ๋“ฑ๋ณ€์„ฑ
    • 7์žฅ: ๋กœ๋ด‡ ํ•™์Šต์—์˜ ์‘์šฉ
      • ๐ŸŽ“ ๋ชจ๋ฐฉ ํ•™์Šต (Imitation Learning)
      • ๐ŸŽฎ ๊ฐ•ํ™” ํ•™์Šต (Reinforcement Learning)
      • ๐Ÿ› ๏ธ ์‹ค์ œ ์‘์šฉ ์˜ˆ์‹œ
    • 8์žฅ: ๊ธฐํ•˜ํ•™์  ์ œ์–ด์™€ SE(3)
      • ๐ŸŽฏ ์™œ ๊ธฐํ•˜ํ•™์  ์ œ์–ด๊ฐ€ ํ•„์š”ํ• ๊นŒ?
      • ๐Ÿ“ ์˜ค์ฐจ ํ•จ์ˆ˜์˜ ์ •์˜
      • โš™๏ธ PD ์ œ์–ด๊ธฐ์˜ ๊ธฐํ•˜ํ•™์  ๋ฒ„์ „
    • 9์žฅ: ์ˆ˜์‹ ์ด์ •๋ฆฌ
      • ํ•ต์‹ฌ ์ •์˜๋“ค
    • 10์žฅ: ๋งˆ๋ฌด๋ฆฌ โ€” ์™œ ์ด๊ฒŒ ์ค‘์š”ํ• ๊นŒ?
      • ๐Ÿš€ ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ์žฅ์ 
  • โ›๏ธ Dig Review
    • 1. ์„œ๋ก  (Introduction)
      • 1.1 ๋ฐฐ๊ฒฝ: ๋”ฅ๋Ÿฌ๋‹๊ณผ ๋กœ๋ณดํ‹ฑ์Šค์˜ ๋งŒ๋‚จ
      • 1.2 ๋ฌธ์ œ์ : ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹์˜ ํ•œ๊ณ„
      • 1.3 ํ•ด๊ฒฐ์ฑ…: ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง (Equivariant Neural Networks)
      • 1.4 ๋…ผ๋ฌธ์˜ ๊ธฐ์—ฌ
    • 2. ์‚ฌ์ „ ์ง€์‹ (Preliminaries)
      • 2.1 ๊ตฐ (Groups)
      • 2.2 ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ๊ณผ ๋ฆฌ ๋Œ€์ˆ˜ (Matrix Lie Groups and Algebras)
      • 2.3 ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ SE(3)
    • 3. ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹ (Equivariant Deep Learning)
      • 3.1 ์ •๊ทœ ๊ทธ๋ฃน CNN (Regular Group CNNs)
      • 3.2 ์กฐํ–ฅ ๊ฐ€๋Šฅ ๊ทธ๋ฃน CNN (Steerable Group CNNs)
      • 3.3 SE(3)-๋“ฑ๋ณ€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง
      • 3.4 PointNet ๊ธฐ๋ฐ˜ ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง
    • 4. ๋กœ๋ณดํ‹ฑ์Šค์—์„œ์˜ ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹
      • 4.1 ๋ชจ๋ฐฉ ํ•™์Šต (Imitation Learning)
      • 4.2 ๋“ฑ๋ณ€ ๊ฐ•ํ™” ํ•™์Šต (Equivariant Reinforcement Learning)
    • 5. ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด (Geometric Impedance Control)
      • 5.1 ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋™์—ญํ•™
      • 5.2 ์˜ค์ฐจ ํ•จ์ˆ˜: SE(3) ์œ„์˜ ๊ฑฐ๋ฆฌ ์œ ์‚ฌ ๋ฉ”ํŠธ๋ฆญ
      • 5.3 SE(3) ์œ„์˜ ์˜ค์ฐจ ๋ฒกํ„ฐ
      • 5.4 SE(3) ์œ„์˜ ์—๋„ˆ์ง€ ํ•จ์ˆ˜
      • 5.5 ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด
    • 6. ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ (Future Works)
      • 6.1 ๋น„์ „์—์„œ ํž˜๊นŒ์ง€์˜ SE(3)-๋“ฑ๋ณ€์„ฑ
      • 6.2 ๋กœ๋ณดํ‹ฑ์Šค์™€ ์‹œ์Šคํ…œ์—์„œ์˜ ๋Œ€์นญ์„ฑ ๊นจ์ง
    • 7. ๊ฒฐ๋ก  (Conclusions)
    • 8. ๋ถ€๋ก (Appendix)
      • A.1 ๋งค๋„๋Ÿฌ์šด ๋‹ค์–‘์ฒด (Smooth Manifolds)
      • A.2 ๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜ (Spherical Harmonics)
      • A.3 ๋“ฑ๋ณ€ ๊ตฌ๋ฉด ์ฑ„๋„ ๋„คํŠธ์›Œํฌ (eSCN)
      • A.4 ์šฐ๋ถˆ๋ณ€ ๋ฉ”ํŠธ๋ฆญ์— ๋Œ€ํ•œ ์ฝ”๋ฉ˜ํŠธ

๐Ÿ“ƒSE(3)-Equivariant ๋ฆฌ๋ทฐ

se3
manipulation
geometric
lie-group
survey
SE(3)-Equivariant Robot Learning and Control - A Tutorial Survey
Published

December 11, 2025

๐Ÿ” Ping. ๐Ÿ”” Ring. โ›๏ธ Dig. A tiered review series: quick look, key ideas, deep dive.

  • Paper Link
  1. โœจ Equivariant neural networks๋Š” ๋กœ๋ด‡ ํ•™์Šต์—์„œ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ๊ณผ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด SE(3)์™€ ๊ฐ™์€ ๋‚ด์žฌ๋œ ๋Œ€์นญ์„ ์•„ํ‚คํ…์ฒ˜์— ๋ช…์‹œ์ ์œผ๋กœ ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.
  2. ๐Ÿ“š ๋ณธ ํŠœํ† ๋ฆฌ์–ผ์€ Lie ๊ทธ๋ฃน ๋ฐ Lie ๋Œ€์ˆ˜์™€ ๊ฐ™์€ ํ•ต์‹ฌ ๊ฐœ๋…์„ ๊ฒ€ํ† ํ•˜๊ณ , SE(3)-equivariant neural networks ์„ค๊ณ„(G-CNNs, steerable methods, GNNs) ๋ฐ Geometric Control์„ ํฌ๊ด„์ ์œผ๋กœ ๋‹ค๋ฃน๋‹ˆ๋‹ค.
  3. ๐Ÿค– ์ด ๋…ผ๋ฌธ์€ SE(3)-equivariance๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋ฐฉ ํ•™์Šต ๋ฐ ๊ฐ•ํ™” ํ•™์Šต ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ๋” ๊ฐ•๋ ฅํ•˜๊ณ  ํšจ์œจ์ ์ธ ๋กœ๋ด‡ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๋ฏธ๋ž˜ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ” Ping Review

๐Ÿ” Ping โ€” A light tap on the surface. Get the gist in seconds.

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ํ•™์Šต ๋ฐ ์ œ์–ด ๋ถ„์•ผ์—์„œ SE(3)-equivariant ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ํฌ๊ด„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ฐ Transformer ๋ชจ๋ธ์ด ๋ฐ์ดํ„ฐ์˜ ๋‚ด์žฌ๋œ ๋Œ€์นญ(symmetries) ๋ฐ ๋ถˆ๋ณ€์„ฑ(invariances)์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๋Š” ๋ฐ˜๋ฉด, Equivariant Neural Networks๋Š” ์ด๋Ÿฌํ•œ ์†์„ฑ์„ ์•„ํ‚คํ…์ฒ˜์— ๋ช…์‹œ์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์—ฌ ํšจ์œจ์„ฑ๊ณผ ์ผ๋ฐ˜ํ™”(generalization)๋ฅผ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ํŠนํžˆ, ์‹œ๊ฐ ๋กœ๋ด‡ ์กฐ์ž‘(visual robotic manipulation) ๋ฐ ์ œ์–ด ์„ค๊ณ„์—์„œ ์ž์—ฐ์Šค๋Ÿฌ์šด 3D ํšŒ์ „ ๋ฐ ๋ณ‘์ง„ ๋Œ€์นญ์„ ํ™œ์šฉํ•˜๋Š” SE(3)-equivariant ๋ชจ๋ธ์— ์ดˆ์ ์„ ๋งž์ถฅ๋‹ˆ๋‹ค.

์ฃผ์š” ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ•๋ก :

  1. SE(3) ๊ตฐ(Group) ๋ฐ ๋ฆฌ ๋Œ€์ˆ˜(Lie Algebra) ๊ธฐ์ดˆ:
    • ๊ตฐ(Groups): ๊ตฐ์˜ ์ •์˜, ๋ถ€๋ถ„๊ตฐ(subgroup), ๊ตฐ ์ž‘์šฉ(group action) ๋“ฑ์„ ๋‹ค๋ฃจ๋ฉฐ, ํŠนํžˆ SE(n)์ด SO(n)๊ณผ ๋ณ‘์ง„๊ตฐ R^n์˜ ๋ฐ˜์ง์ ‘๊ณฑ(semidirect product)์œผ๋กœ ์ •์˜๋จ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. SE(3)๋Š” 3D ๊ฐ•์ฒด ๋ณ€ํ™˜(rigid body transformations)์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
    • ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ(Matrix Lie Groups) ๋ฐ ๋ฆฌ ๋Œ€์ˆ˜(Lie Algebras): ๋ฆฌ ๊ตฐ์€ ์—ฐ์†์ ์ด๋ฉด์„œ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๊ตฐ์œผ๋กœ, ๋ฆฌ ๋Œ€์ˆ˜๋Š” ๋ฆฌ ๊ตฐ์˜ ํ•ญ๋“ฑ์›(identity element)์—์„œ์˜ ์ ‘ ๊ณต๊ฐ„(tangent space)์ž…๋‹ˆ๋‹ค. ๋ฆฌ ๋Œ€์ˆ˜๋Š” ๋ฆฌ ๊ตฐ์˜ ๋ฌดํ•œ์†Œ ๋ณ€ํ™˜(infinitesimal transformations)์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ํ–‰๋ ฌ ์ง€์ˆ˜ ํ•จ์ˆ˜(matrix exponential) \exp(X)์™€ ๋กœ๊ทธ ํ•จ์ˆ˜(log map) \log(g)๋ฅผ ํ†ตํ•ด ๋ฆฌ ๊ตฐ๊ณผ ๋ฆฌ ๋Œ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๊ฐ€ ํ˜•์„ฑ๋ฉ๋‹ˆ๋‹ค. se(3)๋Š” SE(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, โ€œhat-mapโ€ (\hat{\cdot})๊ณผ โ€œvee-mapโ€ (\check{\cdot})์„ ํ†ตํ•ด ๋ฒกํ„ฐ์™€ ์Šคํ-๋Œ€์นญ ํ–‰๋ ฌ(skew-symmetric matrix) ๊ฐ„์˜ ์‚ฌ์ƒ(mapping)์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
    • ๋”ธ๋ฆผ ํ‘œํ˜„(Adjoint Representation): Ad_g X = gXg^{-1}๋กœ ์ •์˜๋˜๋Š” ๋ฆฌ ๊ตฐ์˜ ๋”ธ๋ฆผ ํ‘œํ˜„๊ณผ ad_X Y = [X,Y]๋กœ ์ •์˜๋˜๋Š” ๋ฆฌ ๋Œ€์ˆ˜์˜ ๋”ธ๋ฆผ ํ‘œํ˜„์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ์ด๋Š” ์ขŒํ‘œ๊ณ„ ๋ณ€ํ™˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
    • ํŠธ์œ„์ŠคํŠธ(Twists) ๋ฐ ๋ Œ์น˜(Wrenches): se(3)์˜ ์›์†Œ๋Š” ํŠธ์œ„์ŠคํŠธ๋กœ ๋ถˆ๋ฆฌ๋ฉฐ ๊ณต๊ฐ„ ์†๋„(spatial velocity) V^s = \dot{g}g^{-1}์™€ ๋ชธ์ฒด ์†๋„(body velocity) V^b = g^{-1}\dot{g}๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด๋“ค์€ V^s = Ad_g V^b ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ๋ Œ์น˜๋Š” ํž˜๊ณผ ๋ชจ๋ฉ˜ํŠธ์˜ ์Œ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ฝ”-๋”ธ๋ฆผ ์ž‘์šฉ(co-adjoint action) Ad_g^{*-1}์— ์˜ํ•ด ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค.
  2. Equivariant Deep Learning:
    • Equivariant Map: ์‹ ๊ฒฝ๋ง \Phi: M \to N์ด ๊ตฐ ์ž‘์šฉ g์— ๋Œ€ํ•ด G-equivariantํ•˜๋‹ค๋Š” ๊ฒƒ์€ \Phi(g \circ p) = g \circ \Phi(p)๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ž…๋ ฅ ๋ณ€ํ™˜์— ๋”ฐ๋ผ ์ถœ๋ ฅ์ด ์ผ๊ด€๋˜๊ฒŒ ๋ณ€ํ™˜๋จ์„ ๋ณด์žฅํ•˜์—ฌ ๊ฐ€์ค‘์น˜ ๊ณต์œ (weight sharing)๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
    • ์ •๊ทœ ๊ตฐ CNN (Regular Group CNNs):
      • ํ‘œ์ค€ CNN์€ ๋ณ‘์ง„(translation) ๋Œ€์นญ์—๋Š” ๊ฐ•ํ•˜์ง€๋งŒ ํšŒ์ „(rotation) ๋Œ€์นญ์—๋Š” ์ทจ์•ฝํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(data augmentation)์ด๋‚˜ ์ค‘๋ณต๋œ ํ•„ํ„ฐ ํ•™์Šต์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
      • ๋ฆฌํ”„ํŒ… ํ•ฉ์„ฑ๊ณฑ(Lifting Convolution): ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ R^2 ๋„๋ฉ”์ธ์—์„œ ๊ตฐ ๋„๋ฉ”์ธ SE(2)๋กœ ์‚ฌ์ƒ(map)ํ•˜์—ฌ ํŠน์ง• ๋งต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
      • ๊ตฐ ํ•ฉ์„ฑ๊ณฑ(Group Convolution): SE(2) ๋„๋ฉ”์ธ์—์„œ ์ง์ ‘ ํ•ฉ์„ฑ๊ณฑ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์—ฐ์†์ ์ธ SE(2) ๊ตฐ์— ๋Œ€ํ•œ equivariance๋ฅผ ์™„์ „ํžˆ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด SE(2)๋ฅผ ์œ ํ•œ ๋ถ€๋ถ„๊ตฐ R^2 \rtimes C_N์œผ๋กœ ์ด์‚ฐํ™”(discretize)ํ•˜๋ฉฐ, ์ด๋Š” ๊ณ ์ฐจ์› ํšŒ์ „์— ๋Œ€ํ•œ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค.
    • ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ๊ตฐ CNN (Steerable Group CNNs):
      • ๊ตฐ CNN์˜ ์ด์‚ฐํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ํ•„ํ„ฐ(steerable filter)๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์Šคํ‹ฐ์–ด๋Ÿฌ๋นŒ๋ฆฌํ‹ฐ(steerability)๋Š” ํ•จ์ˆ˜๊ฐ€ ๊ตฐ ๋ณ€ํ™˜์— ์˜ํ•ด ์œ ํ•œํ•œ ๊ธฐ์ € ํ•จ์ˆ˜์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
      • ๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜(Spherical Harmonics, SH): SO(3) ๋ณ€ํ™˜์˜ ๊ธฐ์ € ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. Y_l^m(\theta, \phi)๋Š” ์ฐจ์ˆ˜(degree) l๊ณผ ์ฐจ์ˆ˜(order) m์„ ๊ฐ€์ง€๋ฉฐ, SO(3)์˜ ๊ธฐ์•ฝ ํ‘œํ˜„(irreducible representation)์ธ ์œ„๊ทธ๋„ˆ-D ํ–‰๋ ฌ(Wigner-D matrices) D_l(R)์„ ํ†ตํ•ด equivariantํ•˜๊ฒŒ ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค.
      • ํด๋ ™์Šˆ-๊ณ ๋ฅด๋‹น ํ…์„œ๊ณฑ(Clebsch-Gordan Tensor Product): ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ์„ ํ˜• ๊ณ„์ธต(linear layer)์—์„œ u \in V_{l_1}๊ณผ v \in V_{l_2} ๊ฐ™์€ ๋‘ ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ๋ฒกํ„ฐ๋ฅผ ์ƒˆ๋กœ์šด ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ๋ฒกํ„ฐ (u \otimes_{cg} v)_l^m \in V_l๋กœ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์Šคํ‹ฐ์–ด๋Ÿฌ๋ธ” ์‹ ๊ฒฝ๋ง์˜ ํ•ต์‹ฌ ์š”์†Œ์ž…๋‹ˆ๋‹ค.
      • SE(3)-Equivariant Graph Neural Networks: 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ(point cloud) ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ์‚ฌ์šฉ๋˜๋ฉฐ, Tensor Field Networks (TFNs) ๋ฐ SE(3)-Transformers์™€ ๊ฐ™์€ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด SE(3)-equivariance๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ฐ ํฌ์ธํŠธ์— ๋ถ€์ฐฉ๋œ ํŠน์ง• ๋ฒกํ„ฐ(feature vector)๊ฐ€ SE(3) ๊ตฐ ์ž‘์šฉ์— ๋”ฐ๋ผ ์ ์ ˆํžˆ ๋ณ€ํ™˜๋˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. Equivariant Spherical Channel Network (eSCN)์€ ํ…์„œ๊ณฑ์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๋Š” ํšจ์œจ์ ์ธ ๋Œ€์•ˆ์„ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
  3. ๋กœ๋ณดํ‹ฑ์Šค์—์„œ์˜ Equivariant Deep Learning ์‘์šฉ:
    • ๋ชจ๋ฐฉ ํ•™์Šต(Imitation Learning): Equivariant Descriptor Fields (EDFs)๋Š” pick-and-place ๋ฌธ์ œ์— ๋Œ€ํ•œ SE(3) bi-equivariant ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์—ฌ ๋†’์€ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ๊ณผ ์•„์›ƒ-์˜ค๋ธŒ-๋ถ„ํฌ(out-of-distribution) ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ(robustness)์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์žฅ๋ฉด(scene)๊ณผ ์žก๊ธฐ(grasp) ๋ชจ๋‘์— ๋Œ€ํ•œ equivariance๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. Diffusion-EDFs๋Š” ์ด๋ฅผ ํ™•์‚ฐ ๋ชจ๋ธ(diffusion models)๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ํ›ˆ๋ จ ์‹œ๊ฐ„์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค. Fourier Transporter๋Š” 3D ํ•ฉ์„ฑ๊ณฑ๊ณผ ํ‘ธ๋ฆฌ์— ํ‘œํ˜„(Fourier representation)์„ ์‚ฌ์šฉํ•˜์—ฌ SE(3) bi-equivariant ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
    • ๊ฐ•ํ™” ํ•™์Šต(Reinforcement Learning): ๊ตฐ-๋ถˆ๋ณ€ ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •(Group-Invariant Markov Decision Process, MDP) ๊ฐœ๋…์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋ณด์ƒ ํ•จ์ˆ˜(reward function) R(s, a) = R(g \circ s, g \circ a) ๋ฐ ์ „์ด ํ™•๋ฅ (transition probability) P(s'|s, a) = P(g \circ s'|g \circ s, g \circ a)์ด ๊ตฐ-๋ถˆ๋ณ€(group-invariant)์ผ ๋•Œ ์ตœ์  Q ํ•จ์ˆ˜(Q function) Q^*(s, a)๊ฐ€ ๊ตฐ-๋ถˆ๋ณ€์ด ๋˜๊ณ  ์ตœ์  ์ •์ฑ…(policy) \pi^*(s)์ด equivariantํ•˜๊ฒŒ \pi^*(g \circ s) = g \circ \pi^*(s) ๋จ์„ ์ฆ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ๊ณผ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.
  4. ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด (Geometric Impedance Control):
    • ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ(manipulator)์˜ ์ž‘์—… ๊ณต๊ฐ„(workspace) ์—ญํ•™์„ SE(3) ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ค์ฐจ ํ•จ์ˆ˜(Error Functions): SE(3) ์ƒ์˜ ๋‘ ์ง€์  ๊ฐ„์˜ โ€œ๊ฑฐ๋ฆฌโ€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์Šค์นผ๋ผ ๊ฐ’์œผ๋กœ, ํ–‰๋ ฌ ๊ตฐ(matrix group) ๊ด€์  (\Psi_1(g, g_d) = \frac{1}{2} \|I - g_d^T g\|_F^2)๊ณผ ๋ฆฌ ๋Œ€์ˆ˜(Lie algebra) ๊ด€์  (\Psi_2(g, g_d) = \frac{1}{2} \|\xi_{de}\|^2_K)์—์„œ ์˜ค์ฐจ ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
    • ์œ„์น˜ ์˜ค์ฐจ ๋ฒกํ„ฐ(Positional Error Vector) ๋ฐ ์†๋„ ์˜ค์ฐจ ๋ฒกํ„ฐ(Velocity Error Vector): Lie ๊ตฐ ๊ธฐ๋ฐ˜ ์˜ค์ฐจ ํ•จ์ˆ˜๋กœ๋ถ€ํ„ฐ Geometrically Consistent Error Vector (GCEV) e_G๋ฅผ ๋„์ถœํ•˜๊ณ , ๋‹ค๋ฅธ ์ ‘ ๊ณต๊ฐ„(tangent spaces)์— ์žˆ๋Š” ๋‘ ์ ‘ ๋ฒกํ„ฐ(tangent vectors)๋ฅผ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ์†๋„ ์˜ค์ฐจ ๋ฒกํ„ฐ e_V๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
    • ์—๋„ˆ์ง€ ํ•จ์ˆ˜(Energy Functions): ์œ„์น˜ ์˜ค์ฐจ ํ•จ์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํผํ…์…œ ์—๋„ˆ์ง€ ํ•จ์ˆ˜(potential energy function) P_i(g, g_d)๋ฅผ ์ •์˜ํ•˜๊ณ , ์†๋„ ์˜ค์ฐจ ๋ฒกํ„ฐ์™€ ๊ด€์„ฑ ํ–‰๋ ฌ(inertia matrix)์„ ์‚ฌ์šฉํ•˜์—ฌ ์šด๋™ ์—๋„ˆ์ง€(kinetic energy) K(t,q,\dot{q})๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
    • SE(3)-Equivariant ์ œ์–ด ๋ฒ•์น™: GIC๋Š” ์ด ๊ธฐ๊ณ„ ์—๋„ˆ์ง€(total mechanical energy)๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์†Œ๋ฉธ๋˜๋„๋ก ์„ค๊ณ„๋œ ์ œ์–ด ๋ฒ•์น™์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, GIC๋Š” ๊ณต๊ฐ„ ์ขŒํ‘œ๊ณ„(spatial frame)์—์„œ ๊ธฐ์ˆ ๋  ๋•Œ SE(3)-equivariantํ•จ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํ”ผ๋“œ๋ฐฑ ํ•ญ(feedback terms) f_G๊ฐ€ ์ขŒ๋ถˆ๋ณ€(left-invariant) ์†์„ฑ f_G(g_l g, g_l g_d) = f_G(g, g_d)์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ:

  • ๋น„์ „-๋Œ€-ํž˜ SE(3)-Equivariance (Vision-to-Force SE(3)-Equivariance): ์‹œ๊ฐ ์ •๋ณด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํž˜ ์ƒํ˜ธ์ž‘์šฉ(force interaction)์„ ํฌํ•จํ•˜๋Š” ์กฐ์ž‘ ์ž‘์—…์—์„œ equivariance๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ƒ˜ํ”Œ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š” ์—ฐ๊ตฌ.
  • ๋กœ๋ณดํ‹ฑ์Šค ๋ฐ ์‹œ์Šคํ…œ์—์„œ์˜ ๋Œ€์นญ ๊นจ์ง(Symmetry Breaking): ๋กœ๋ด‡์˜ ํŠน์ด์ (singular configuration)์ด๋‚˜ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ์ œ์•ฝ(constraints)๊ณผ ๊ฐ™์€ ์š”์ธ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋Œ€์นญ ๊นจ์ง ํ˜„์ƒ๊ณผ, ๊ด€์ธก ๊ณต๊ฐ„(observation space)์˜ ๋ถˆ์™„์ „์„ฑ(imperfection)์ด equivariant ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ.

์ด ๋…ผ๋ฌธ์€ ๋กœ๋ด‡ ์กฐ์ž‘ ๋ฐ ์ œ์–ด ๋ถ„์•ผ์—์„œ equivariant ๋”ฅ๋Ÿฌ๋‹๊ณผ ๊ธฐํ•˜ํ•™์  ์ œ์–ด์˜ ์œตํ•ฉ์„ ์œ„ํ•œ ํฌ๊ด„์ ์ธ ์ด๋ก ์  ํ‹€๊ณผ ์‹ค์šฉ์  ์ ์šฉ ์‚ฌ๋ก€๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ”” Ring Review

๐Ÿ”” Ring โ€” An idea that echoes. Grasp the core and its value.

โ€œ์ž์—ฐ์˜ ๋ฒ•์น™์€ ์•„๋ฆ„๋‹ต๊ณ , ๊ทธ ์•„๋ฆ„๋‹ค์›€์˜ ํ•ต์‹ฌ์—๋Š” ๋Œ€์นญ์„ฑ์ด ์žˆ๋‹ค.โ€
โ€” ๋ฆฌ์ฒ˜๋“œ ํŒŒ์ธ๋งŒ

1์žฅ: ๋Œ€์นญ์„ฑ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

๐Ÿชž ๊ฑฐ์šธ ์•ž์—์„œ ์ƒ๊ฐํ•ด๋ณด๊ธฐ

๋จผ์ € ์งˆ๋ฌธ ํ•˜๋‚˜ ๋˜์ ธ๋ณผ๊ฒŒ. ๋„ค๊ฐ€ ๊ฑฐ์šธ ์•ž์— ์„œ ์žˆ๋‹ค๊ณ  ์ƒ์ƒํ•ด๋ด. ๋„ˆ๋Š” ์˜ค๋ฅธ์†์„ ๋“ค์—ˆ๋Š”๋ฐ, ๊ฑฐ์šธ ์† ๋„ˆ๋Š” ์™ผ์†์„ ๋“ค๊ณ  ์žˆ์ง€? ์ด๊ฒŒ ๋ฐ”๋กœ โ€œ๊ฑฐ์šธ ๋Œ€์นญโ€์ด์•ผ.

์ž, ์ด๋ฒˆ์—” ๋‹ค๋ฅธ ๊ฑธ ์ƒ๊ฐํ•ด๋ณด์ž. ๋„ค ๋ฐฉ์— ์ปต์ด ํ•˜๋‚˜ ์žˆ์–ด. ์ด ์ปต์„:

  1. ํšŒ์ „์‹œ์ผœ๋„ (๋Œ๋ ค๋„) โ€” ์—ฌ์ „ํžˆ ๊ฐ™์€ ์ปต์ด์•ผ
  2. ์ด๋™์‹œ์ผœ๋„ (์ฑ…์ƒ์—์„œ ๋ฐ”๋‹ฅ์œผ๋กœ ์˜ฎ๊ฒจ๋„) โ€” ์—ฌ์ „ํžˆ ๊ฐ™์€ ์ปต์ด์•ผ

์ด๋ ‡๊ฒŒ ์–ด๋–ค ๋ณ€ํ™˜์„ ํ•ด๋„ ๋ณธ์งˆ์ด ๋ณ€ํ•˜์ง€ ์•Š๋Š” ์„ฑ์งˆ, ๊ทธ๊ฒŒ ๋ฐ”๋กœ ๋Œ€์นญ์„ฑ(Symmetry)์ด์•ผ.

๐ŸŒ ์™œ ์ด๊ฒŒ ๋กœ๋ด‡์—๊ฒŒ ์ค‘์š”ํ• ๊นŒ?

๋กœ๋ด‡ ํŒ”์ด ์ปต์„ ์ง‘์œผ๋ ค๊ณ  ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ด. ์ปต์ด ์ฑ…์ƒ ์™ผ์ชฝ์— ์žˆ๋“ , ์˜ค๋ฅธ์ชฝ์— ์žˆ๋“ , 45๋„ ๋Œ์•„๊ฐ€ ์žˆ๋“  โ€” ์ปต์„ ์ง‘๋Š” ๋ฐฉ๋ฒ•์˜ ๋ณธ์งˆ์€ ๋˜‘๊ฐ™์•„์•ผ ํ•˜์ง€ ์•Š๊ฒ ์–ด?

๋ฌธ์ œ๋Š” ๊ธฐ์กด์˜ ์ธ๊ณต์ง€๋Šฅ(๋”ฅ๋Ÿฌ๋‹)์€ ์ด๊ฑธ ์ž˜ ๋ชจ๋ฅธ๋‹ค๋Š” ๊ฑฐ์•ผ. ์ปต์ด ์ •๋ฉด์— ์žˆ์„ ๋•Œ ์ง‘๋Š” ๋ฒ•์„ ๋ฐฐ์› ๋Š”๋ฐ, ์ปต์„ 90๋„ ๋Œ๋ ค๋†“์œผ๋ฉด โ€œ์–ด? ์ด๊ฑด ๋ญ์ง€?โ€ ํ•˜๊ณ  ๋‹นํ™ฉํ•ด๋ฒ„๋ ค.

ํ•ด๊ฒฐ์ฑ…: ๋Œ€์นญ์„ฑ์„ ์ฒ˜์Œ๋ถ€ํ„ฐ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์— ๋„ฃ์–ด๋ฒ„๋ฆฌ๋ฉด ์–ด๋–จ๊นŒ?


2์žฅ: ๊ตฐ(็พค, Group)์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

๐ŸŽฎ ๋ณ€ํ™˜๋“ค์˜ ๊ฒŒ์ž„

โ€œ๊ตฐโ€์ด๋ผ๋Š” ๋‹จ์–ด๊ฐ€ ์ข€ ๋ฌด์„ญ์ง€? ๊ทผ๋ฐ ์‚ฌ์‹ค ์—„์ฒญ ๋‹จ์ˆœํ•œ ์•„์ด๋””์–ด์•ผ.

๊ตฐ(Group)์ด๋ž€ โ€œ๋ณ€ํ™˜๋“ค์˜ ๋ชจ์ž„โ€์ธ๋ฐ, ํŠน๋ณ„ํ•œ ๊ทœ์น™ ๋„ค ๊ฐ€์ง€๋ฅผ ๋งŒ์กฑํ•ด์•ผ ํ•ด:

๊ทœ์น™ 1: ๋‹ซํž˜ (Closure)

๋‘ ๋ณ€ํ™˜์„ ์—ฐ์†์œผ๋กœ ํ•˜๋ฉด, ๊ทธ ๊ฒฐ๊ณผ๋„ ๊ฐ™์€ ์ข…๋ฅ˜์˜ ๋ณ€ํ™˜์ด์–ด์•ผ ํ•ด.

์˜ˆ๋ฅผ ๋“ค์–ด, ์‹œ๊ณ„ ๋ฐฉํ–ฅ 30๋„ ํšŒ์ „ ํ›„์— ์‹œ๊ณ„ ๋ฐฉํ–ฅ 60๋„ ํšŒ์ „์„ ํ•˜๋ฉด? ์‹œ๊ณ„ ๋ฐฉํ–ฅ 90๋„ ํšŒ์ „์ด์ง€! ์—ฌ์ „ํžˆ โ€œํšŒ์ „โ€์ด์•ผ.

์ˆ˜ํ•™์œผ๋กœ ์“ฐ๋ฉด:

g_1 \cdot g_2 \in G \quad \text{(๋‘ ์›์†Œ์˜ ๊ฒฐํ•ฉ๋„ ๊ทธ ๊ตฐ์— ์†ํ•จ)}

๊ทœ์น™ 2: ๊ฒฐํ•ฉ๋ฒ•์น™ (Associativity)

์„ธ ๊ฐœ์˜ ๋ณ€ํ™˜ g_1, g_2, g_3์ด ์žˆ์„ ๋•Œ:

(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)

์–ด๋–ค ์ˆœ์„œ๋กœ ๊ด„ํ˜ธ๋ฅผ ๋ฌถ์–ด๋„ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ™์•„. ๋งˆ์น˜ (2 \times 3) \times 4 = 2 \times (3 \times 4)์ธ ๊ฒƒ์ฒ˜๋Ÿผ!

๊ทœ์น™ 3: ํ•ญ๋“ฑ์› (Identity)

โ€œ์•„๋ฌด๊ฒƒ๋„ ์•ˆ ํ•˜๋Š”โ€ ๋ณ€ํ™˜์ด ์žˆ์–ด์•ผ ํ•ด. ์ด๊ฑธ e ๋˜๋Š” 1์ด๋ผ๊ณ  ๋ถˆ๋Ÿฌ.

g \cdot e = e \cdot g = g

0๋„ ํšŒ์ „ = ํšŒ์ „ ์•ˆ ํ•จ = ์›๋ž˜ ๊ทธ๋Œ€๋กœ!

๊ทœ์น™ 4: ์—ญ์› (Inverse)

๋ชจ๋“  ๋ณ€ํ™˜์—๋Š” โ€œ๋˜๋Œ๋ฆฌ๋Š”โ€ ๋ณ€ํ™˜์ด ์žˆ์–ด์•ผ ํ•ด.

g \cdot g^{-1} = g^{-1} \cdot g = e

์‹œ๊ณ„ ๋ฐฉํ–ฅ 30๋„ ํšŒ์ „์˜ ์—ญ์›? ๋ฐ˜์‹œ๊ณ„ ๋ฐฉํ–ฅ 30๋„ ํšŒ์ „์ด์ง€!

๐Ÿ“ฆ ์‹ค์ œ ์˜ˆ์‹œ๋“ค

๊ตฐ์˜ ์ด๋ฆ„ ๋ญ˜ ํ•˜๋Š” ๋ณ€ํ™˜์ธ๊ฐ€ ์ˆ˜ํ•™ ๊ธฐํ˜ธ
ํ‰ํ–‰์ด๋™๊ตฐ ๊ณต๊ฐ„์—์„œ ์ด๋™ (\mathbb{R}^n, +)
ํšŒ์ „๊ตฐ 3D ํšŒ์ „ SO(3)
ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ ํšŒ์ „ + ์ด๋™ SE(3)
์ผ๋ฐ˜์„ ํ˜•๊ตฐ ๋’ค์ง‘์„ ์ˆ˜ ์žˆ๋Š” ํ–‰๋ ฌ๋“ค GL(n)

3์žฅ: SO(3)์™€ SE(3) โ€” ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ๋Š” 3์ฐจ์› ์„ธ๊ณ„

๐Ÿ”„ SO(3): 3์ฐจ์› ํšŒ์ „์˜ ์„ธ๊ณ„

SO(3)์€ โ€œSpecial Orthogonal group in 3 dimensionsโ€์˜ ์•ฝ์ž์•ผ. ๋ฌด์Šจ ๋ง์ด๋ƒ๋ฉด:

3์ฐจ์› ๊ณต๊ฐ„์—์„œ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ํšŒ์ „

โ€œSpecialโ€์˜ ์˜๋ฏธ๋Š” โ€œ๋’ค์ง‘๊ธฐ(reflection) ์—†์ด ์ˆœ์ˆ˜ํ•œ ํšŒ์ „๋งŒโ€์ด๋ผ๋Š” ๋œป์ด์•ผ.

SO(3)์˜ ํšŒ์ „์€ 3ร—3 ํšŒ์ „ ํ–‰๋ ฌ R๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์–ด:

R \in SO(3) \iff R^T R = I \text{ ๊ทธ๋ฆฌ๊ณ  } \det(R) = 1

์—ฌ๊ธฐ์„œ: - R^T๋Š” R์˜ ์ „์น˜ํ–‰๋ ฌ (ํ–‰๊ณผ ์—ด์„ ๋ฐ”๊พผ ๊ฒƒ) - I๋Š” ๋‹จ์œ„ํ–‰๋ ฌ (๋Œ€๊ฐ์„ ๋งŒ 1, ๋‚˜๋จธ์ง€ 0) - \det(R) = 1์€ โ€œํฌ๊ธฐ๋ฅผ ๋ณ€ํ˜•ํ•˜์ง€ ์•Š๊ณ , ๋’ค์ง‘์ง€๋„ ์•Š๋Š”๋‹คโ€๋Š” ๋œป

์™œ R^T R = I์ผ๊นŒ?

ํšŒ์ „ ํ–‰๋ ฌ์˜ ๊ฐ ์—ด(๋˜๋Š” ํ–‰)์€ ์ง๊ตํ•˜๋Š” ๋‹จ์œ„๋ฒกํ„ฐ๋“ค์ด์•ผ. ์„œ๋กœ ์ˆ˜์ง์ด๊ณ , ๊ธธ์ด๊ฐ€ 1์ด๋ผ๋Š” ๊ฑฐ์ง€. ์ด ์กฐ๊ฑด์„ ์ˆ˜ํ•™์œผ๋กœ ์“ฐ๋ฉด R^T R = I๊ฐ€ ๋ผ.

๐Ÿšถ SE(3): ํšŒ์ „ + ์ด๋™์˜ ์„ธ๊ณ„

SE(3)์€ โ€œSpecial Euclidean group in 3 dimensionsโ€์˜ ์•ฝ์ž์•ผ:

3์ฐจ์› ๊ณต๊ฐ„์—์„œ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ํšŒ์ „๊ณผ ํ‰ํ–‰์ด๋™์˜ ์กฐํ•ฉ

์ด๊ฑด 4ร—4 ํ–‰๋ ฌ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์–ด:

T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \in SE(3)

์—ฌ๊ธฐ์„œ: - R: 3ร—3 ํšŒ์ „ ํ–‰๋ ฌ (SO(3)์˜ ์›์†Œ) - p: 3ร—1 ํ‰ํ–‰์ด๋™ ๋ฒกํ„ฐ (์–ด๋””๋กœ ์ด๋™ํ• ์ง€) - ๋งˆ์ง€๋ง‰ ํ–‰ [0, 0, 0, 1]์€ ๊ณ„์‚ฐ์„ ํŽธํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ํŠธ๋ฆญ์ด์•ผ

์‹ค์ œ ๋ณ€ํ™˜์€ ์–ด๋–ป๊ฒŒ ๊ณ„์‚ฐํ• ๊นŒ?

3D ์  x = (x_1, x_2, x_3)์— SE(3) ๋ณ€ํ™˜์„ ์ ์šฉํ•˜๋ฉด:

\begin{bmatrix} x' \\ 1 \end{bmatrix} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Rx + p \\ 1 \end{bmatrix}

์ฆ‰, ๋จผ์ € ํšŒ์ „(Rx)ํ•˜๊ณ , ๊ทธ ๋‹ค์Œ ์ด๋™(+p)ํ•˜๋Š” ๊ฑฐ์•ผ!

๐Ÿค” ์™œ SE(3)๊ฐ€ ๋กœ๋ด‡์—๊ฒŒ ์ค‘์š”ํ• ๊นŒ?

๋กœ๋ด‡์ด ์‚ฌ๋Š” ์„ธ๊ณ„๋ฅผ ์ƒ๊ฐํ•ด๋ด:

  1. ์นด๋ฉ”๋ผ๋กœ ๋ฌผ์ฒด๋ฅผ ๋ณผ ๋•Œ โ€” ์นด๋ฉ”๋ผ ์œ„์น˜์™€ ๊ฐ๋„์— ๋”ฐ๋ผ ๋ณด์ด๋Š” ๊ฒŒ ๋‹ฌ๋ผ
  2. ํŒ”๋กœ ๋ฌผ๊ฑด์„ ์ง‘์„ ๋•Œ โ€” ๋ฌผ๊ฑด์˜ ์œ„์น˜์™€ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ๋‹ฌ๋ผ
  3. ์ด๋™ํ•  ๋•Œ โ€” ์ถœ๋ฐœ์ ์—์„œ ๋ชฉ์ ์ง€๊นŒ์ง€ ํšŒ์ „ํ•˜๊ณ  ์ด๋™ํ•ด์•ผ ํ•ด

์ด ๋ชจ๋“  ๊ฒŒ SE(3) ๋ณ€ํ™˜์ด์•ผ!


4์žฅ: ๋“ฑ๋ณ€์„ฑ(Equivariance)๊ณผ ๋ถˆ๋ณ€์„ฑ(Invariance)

๐ŸŽฏ ํ•ต์‹ฌ ๊ฐœ๋…: ๋ณ€ํ™˜์— ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”๊ฐ€?

์ž, ์ด์ œ ์˜ค๋Š˜์˜ ์ฃผ์ธ๊ณต์„ ์†Œ๊ฐœํ• ๊ฒŒ: ๋“ฑ๋ณ€์„ฑ(Equivariance)

ํ•จ์ˆ˜ f๊ฐ€ ์žˆ๊ณ , ์ž…๋ ฅ x์— ๋ณ€ํ™˜ g๋ฅผ ์ ์šฉํ•œ๋‹ค๊ณ  ํ•ด๋ณด์ž.

๋ถˆ๋ณ€์„ฑ (Invariance)

์ถœ๋ ฅ์ด ๋ณ€ํ•˜์ง€ ์•Š์œผ๋ฉด ๋ถˆ๋ณ€(Invariant)์ด์•ผ:

f(g \cdot x) = f(x)

์˜ˆ์‹œ: ๋ฌผ์ฒด ์ธ์‹. ์ปต์„ ๋Œ๋ ค๋„ โ€œ์ด๊ฑด ์ปต์ด๋‹คโ€๋ผ๋Š” ํŒ๋‹จ์€ ๋ณ€ํ•˜์ง€ ์•Š์•„์•ผ ํ•ด.

๋“ฑ๋ณ€์„ฑ (Equivariance)

์ถœ๋ ฅ์ด ์ž…๋ ฅ๊ณผ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ๋ณ€ํ•˜๋ฉด ๋“ฑ๋ณ€(Equivariant)์ด์•ผ:

f(g \cdot x) = g \cdot f(x)

์˜ˆ์‹œ: ๋ฌผ์ฒด ์œ„์น˜ ์ฐพ๊ธฐ. ์ปต์„ ์˜ค๋ฅธ์ชฝ์œผ๋กœ 10cm ์˜ฎ๊ธฐ๋ฉด, โ€œ์ปต์˜ ์œ„์น˜โ€๋ผ๋Š” ์ถœ๋ ฅ๋„ ์˜ค๋ฅธ์ชฝ์œผ๋กœ 10cm ์˜ฎ๊ฒจ์ ธ์•ผ ํ•ด.

๐Ÿ–ผ๏ธ ๊ทธ๋ฆผ์œผ๋กœ ์ดํ•ดํ•˜๊ธฐ

์‚ผ๊ฐํ˜•์˜ ๋ฌด๊ฒŒ์ค‘์‹ฌ(centroid)์„ ๊ตฌํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์ƒ๊ฐํ•ด๋ด:

์›๋ž˜ ์‚ผ๊ฐํ˜•        โ†’    ํ•จ์ˆ˜ f    โ†’    ๋ฌด๊ฒŒ์ค‘์‹ฌ ์ 
     โ–ณ                                    โ€ข

  (ํšŒ์ „ ์ ์šฉ)                          (๊ฐ™์€ ํšŒ์ „ ์ ์šฉ)
     โ†“                                    โ†“

ํšŒ์ „๋œ ์‚ผ๊ฐํ˜•      โ†’    ํ•จ์ˆ˜ f    โ†’    ํšŒ์ „๋œ ๋ฌด๊ฒŒ์ค‘์‹ฌ
     โ–ณ                                    โ€ข

์‚ผ๊ฐํ˜•์„ ๋Œ๋ฆฌ๊ณ  ๋‚˜์„œ ๋ฌด๊ฒŒ์ค‘์‹ฌ์„ ๊ตฌํ•˜๋“ , ๋ฌด๊ฒŒ์ค‘์‹ฌ์„ ๊ตฌํ•˜๊ณ  ๋‚˜์„œ ๊ทธ ์ ์„ ๋Œ๋ฆฌ๋“ , ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ™์•„์•ผ ํ•ด. ์ด๊ฒŒ ๋ฐ”๋กœ ๋“ฑ๋ณ€์„ฑ์ด์•ผ!

๐Ÿ“ ์ˆ˜ํ•™์ ์œผ๋กœ ๋” ์ •ํ™•ํ•˜๊ฒŒ

์ž…๋ ฅ ๊ณต๊ฐ„ X์™€ ์ถœ๋ ฅ ๊ณต๊ฐ„ Y๊ฐ€ ์žˆ๊ณ , ๊ตฐ G๊ฐ€ ๋‘ ๊ณต๊ฐ„์— ๊ฐ๊ฐ ์ž‘์šฉํ•œ๋‹ค๊ณ  ํ•ด๋ณด์ž: - G๊ฐ€ X์— ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹: \rho_X(g) - G๊ฐ€ Y์— ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹: \rho_Y(g)

ํ•จ์ˆ˜ f: X \to Y๊ฐ€ G-๋“ฑ๋ณ€์ด๋ ค๋ฉด:

f(\rho_X(g) \cdot x) = \rho_Y(g) \cdot f(x), \quad \forall g \in G, \forall x \in X

๋ถˆ๋ณ€์„ฑ์€ ๋“ฑ๋ณ€์„ฑ์˜ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ์•ผ. \rho_Y(g)๊ฐ€ ํ•ญ์ƒ ํ•ญ๋“ฑ ๋ณ€ํ™˜์ผ ๋•Œ:

f(\rho_X(g) \cdot x) = f(x)


5์žฅ: ๋ฆฌ ๊ตฐ(Lie Group)๊ณผ ๋ฆฌ ๋Œ€์ˆ˜(Lie Algebra)

๐ŸŒŠ ์—ฐ์†์ ์ธ ๋ณ€ํ™˜์˜ ์„ธ๊ณ„

์ง€๊ธˆ๊นŒ์ง€ ๋ฐฐ์šด ๊ตฐ ์ค‘์—์„œ SO(3)์™€ SE(3)๋Š” ํŠน๋ณ„ํ•ด. ์™œ๋ƒํ•˜๋ฉด ๋ณ€ํ™˜์ด ์—ฐ์†์ ์ด๊ฑฐ๋“ .

์ •์œก๋ฉด์ฒด๋ฅผ 90๋„์”ฉ๋งŒ ๋Œ๋ฆด ์ˆ˜ ์žˆ๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, 1๋„, 0.001๋„, ์•„๋ฌด ๊ฐ๋„๋กœ๋‚˜ ๋Œ๋ฆด ์ˆ˜ ์žˆ์ž–์•„? ์ด๋ ‡๊ฒŒ ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฐ์„ ๋ฆฌ ๊ตฐ(Lie Group)์ด๋ผ๊ณ  ๋ถˆ๋Ÿฌ.

๋ฆฌ ๊ตฐ = ๊ตฐ + ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๋งค๋„๋Ÿฌ์šด ๊ตฌ์กฐ

๐Ÿงฎ ๋ฆฌ ๋Œ€์ˆ˜: ๋ณ€ํ™”์˜ โ€œ์†๋„โ€

๋ฆฌ ๋Œ€์ˆ˜๋Š” ์ข€ ์ถ”์ƒ์ ์ธ๋ฐ, ์ง๊ด€์ ์œผ๋กœ ์„ค๋ช…ํ•ด๋ณผ๊ฒŒ.

๋ฆฌ ๊ตฐ์ด โ€œ์–ด๋””์— ์žˆ๋Š”๊ฐ€โ€๋ผ๋ฉด,
๋ฆฌ ๋Œ€์ˆ˜๋Š” โ€œ์–ด๋А ๋ฐฉํ–ฅ์œผ๋กœ ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ๋ณ€ํ•˜๋Š”๊ฐ€โ€์•ผ.

์ˆ˜ํ•™์ ์œผ๋กœ, ๋ฆฌ ๋Œ€์ˆ˜ \mathfrak{g}๋Š” ํ•ญ๋“ฑ์› ๊ทผ์ฒ˜์—์„œ์˜ ์ ‘์„  ๊ณต๊ฐ„์ด์•ผ:

\mathfrak{g} = T_e G

๐Ÿ”„ SO(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜: \mathfrak{so}(3)

SO(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜๋Š” ๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ(skew-symmetric matrix)๋“ค์˜ ์ง‘ํ•ฉ์ด์•ผ:

\mathfrak{so}(3) = \{\Omega \in \mathbb{R}^{3 \times 3} : \Omega^T = -\Omega\}

๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ์ด ๋ญ๋ƒ๋ฉด:

\Omega = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}

์ด๊ฑด 3์ฐจ์› ๋ฒกํ„ฐ \omega = (\omega_1, \omega_2, \omega_3)์™€ ์ผ๋Œ€์ผ ๋Œ€์‘๋ผ. ์ด ๋ฒกํ„ฐ๊ฐ€ ๋ฐ”๋กœ ๊ฐ์†๋„ ๋ฒกํ„ฐ์•ผ!

Hat ์—ฐ์‚ฐ์ž์™€ Vee ์—ฐ์‚ฐ์ž

๋ฒกํ„ฐ๋ฅผ ๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ๋กœ ๋ฐ”๊พธ๋Š” ๊ฑธ Hat ์—ฐ์‚ฐ์ž (\cdot)^\wedge๋ผ๊ณ  ํ•ด:

\omega^\wedge = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}

๋ฐ˜๋Œ€๋กœ ํ–‰๋ ฌ์„ ๋ฒกํ„ฐ๋กœ ๋ฐ”๊พธ๋Š” ๊ฑด Vee ์—ฐ์‚ฐ์ž (\cdot)^\vee:

(\omega^\wedge)^\vee = \omega

๐ŸŒ‰ ์ง€์ˆ˜ ์‚ฌ์ƒ: ๋ฆฌ ๋Œ€์ˆ˜์—์„œ ๋ฆฌ ๊ตฐ์œผ๋กœ

๋ฆฌ ๋Œ€์ˆ˜(์†๋„)์—์„œ ๋ฆฌ ๊ตฐ(์œ„์น˜)์œผ๋กœ ๊ฐ€๋Š” ๋‹ค๋ฆฌ๊ฐ€ ์žˆ์–ด. ์ด๊ฑธ ์ง€์ˆ˜ ์‚ฌ์ƒ(Exponential Map)์ด๋ผ๊ณ  ๋ถˆ๋Ÿฌ:

\exp: \mathfrak{g} \to G

SO(3)์˜ ๊ฒฝ์šฐ, ์œ ๋ช…ํ•œ ๋กœ๋“œ๋ฆฌ๊ฒŒ์Šค ๊ณต์‹(Rodriguesโ€™ Formula)์„ ์จ:

\exp(\omega^\wedge) = I + \frac{\sin\theta}{\theta}\omega^\wedge + \frac{1 - \cos\theta}{\theta^2}(\omega^\wedge)^2

์—ฌ๊ธฐ์„œ \theta = \|\omega\|๋Š” ํšŒ์ „ ๊ฐ๋„์•ผ.

์ง๊ด€์  ์˜๋ฏธ: ๊ฐ์†๋„ \omega๋กœ 1์ดˆ ๋™์•ˆ ํšŒ์ „ํ•˜๋ฉด ์–ด๋””์— ๋„์ฐฉํ•˜๋Š”๊ฐ€?

๐Ÿ”„ SE(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜: \mathfrak{se}(3)

SE(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜๋Š” ์ด๋ ‡๊ฒŒ ์ƒ๊ฒผ์–ด:

\xi^\wedge = \begin{bmatrix} \omega^\wedge & v \\ 0 & 0 \end{bmatrix} \in \mathfrak{se}(3)

์—ฌ๊ธฐ์„œ: - \omega \in \mathbb{R}^3: ๊ฐ์†๋„ (ํšŒ์ „ ๋ฐฉํ–ฅ๊ณผ ์†๋„) - v \in \mathbb{R}^3: ์„ ์†๋„ (์ด๋™ ๋ฐฉํ–ฅ๊ณผ ์†๋„)

6์ฐจ์› ๋ฒกํ„ฐ \xi = (v, \omega)๋กœ ํ‘œํ˜„ํ•˜๊ธฐ๋„ ํ•ด. ์ด๊ฑธ ํŠธ์œ„์ŠคํŠธ(twist)๋ผ๊ณ  ๋ถˆ๋Ÿฌ.


6์žฅ: ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ์„ค๊ณ„

๐Ÿง  ์™œ ์ผ๋ฐ˜ ์‹ ๊ฒฝ๋ง์€ ๋Œ€์นญ์„ฑ์„ ์ดํ•ด ๋ชปํ• ๊นŒ?

์ผ๋ฐ˜์ ์ธ ์‹ ๊ฒฝ๋ง(MLP, CNN ๋“ฑ)์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ๋Œ€์นญ์„ฑ์„ ๋ชจ๋ฅด๊ณ  ๋ฌด์‹ํ•˜๊ฒŒ ํ•™์Šตํ•ด.

์˜ˆ๋ฅผ ๋“ค์–ด, ์ปต ์ด๋ฏธ์ง€๋กœ โ€œ์ปต ์ธ์‹โ€์„ ํ•™์Šตํ–ˆ๋Š”๋ฐ: - ์ปต์ด ์ •๋ฉด์— ์žˆ์„ ๋•Œ: ์ž˜ ์ธ์‹! โœ“ - ์ปต์„ 45๋„ ๋Œ๋ฆฌ๋ฉด: โ€œ์ด๊ฑด ๋ญ์ง€โ€ฆ?โ€ โœ— - ์ปต์„ ๋’ค์ง‘์œผ๋ฉด: โ€œ์™„์ „ ๋ชจ๋ฅด๊ฒ ์–ด!โ€ โœ—

ํ•ด๊ฒฐ์ฑ… 1: ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(Data Augmentation). ์˜จ๊ฐ– ๊ฐ๋„์˜ ์ปต ์ด๋ฏธ์ง€๋ฅผ ๋‹ค ๋ณด์—ฌ์ค˜!

๋ฌธ์ œ: ๋ฐ์ดํ„ฐ๊ฐ€ ์—„์ฒญ ๋งŽ์ด ํ•„์š”ํ•˜๊ณ , ์‹œ๊ฐ„๋„ ์˜ค๋ž˜ ๊ฑธ๋ ค.

ํ•ด๊ฒฐ์ฑ… 2: ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง. ์ฒ˜์Œ๋ถ€ํ„ฐ ๋Œ€์นญ์„ฑ์„ ์•„๋Š” ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด!

๐Ÿ”ง ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด

๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์€ ๊ฐ ์ธต(layer)์ด ๋“ฑ๋ณ€ ํ•จ์ˆ˜๊ฐ€ ๋˜๋„๋ก ์„ค๊ณ„ํ•ด:

\text{Layer}_i(g \cdot x) = g \cdot \text{Layer}_i(x)

์‹ ๊ธฐํ•œ ๊ฑด, ๋“ฑ๋ณ€ ์ธต์„ ์—ฐ์†์œผ๋กœ ์Œ“์œผ๋ฉด ์ „์ฒด ๋„คํŠธ์›Œํฌ๋„ ๋“ฑ๋ณ€์ด ๋œ๋‹ค๋Š” ๊ฑฐ์•ผ!

f = \text{Layer}_n \circ \cdots \circ \text{Layer}_2 \circ \text{Layer}_1

๊ฐ ์ธต์ด ๋“ฑ๋ณ€์ด๋ฉด:

f(g \cdot x) = \text{Layer}_n(\cdots(\text{Layer}_1(g \cdot x))) = g \cdot \text{Layer}_n(\cdots(\text{Layer}_1(x))) = g \cdot f(x)

๐Ÿ“Š ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ SE(3)-๋“ฑ๋ณ€์„ฑ

๋กœ๋ด‡ ์‹œ๊ฐ์—์„œ ๋งŽ์ด ์“ฐ๋Š” ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๊ฐ€ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ(Point Cloud)์•ผ. 3D ๊ณต๊ฐ„์˜ ์ ๋“ค ์ง‘ํ•ฉ์ด์ง€:

X = \{x_1, x_2, \ldots, x_N\}, \quad x_i \in \mathbb{R}^3

SE(3) ๋ณ€ํ™˜ T = (R, p)๋ฅผ ์ ์šฉํ•˜๋ฉด:

T \cdot X = \{Rx_1 + p, Rx_2 + p, \ldots, Rx_N + p\}

SE(3)-๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์€ ์ด๋Ÿฐ ์„ฑ์งˆ์„ ๋งŒ์กฑํ•ด:

f(T \cdot X) = T \cdot f(X)

ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋ฅผ ๋Œ๋ฆฌ๊ฑฐ๋‚˜ ์˜ฎ๊ฒจ๋„, ์ถœ๋ ฅ๋„ ๋˜‘๊ฐ™์ด ๋Œ์•„๊ฐ€๊ฑฐ๋‚˜ ์˜ฎ๊ฒจ์ ธ์•ผ ํ•ด!

๐Ÿ”ฌ ํ…์„œ์žฅ ์‹ ๊ฒฝ๋ง (Tensor Field Networks)

๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ๊ฐ€ ํ…์„œ์žฅ ์‹ ๊ฒฝ๋ง(TFN)์ด์•ผ.

ํ•ต์‹ฌ ์•„์ด๋””์–ด: ๊ฐ ์ ์— ์Šค์นผ๋ผ, ๋ฒกํ„ฐ, ๊ณ ์ฐจ ํ…์„œ ํŠน์„ฑ์„ ๋ถ™์ด๊ณ , ์ด๊ฒƒ๋“ค์ด ๋ณ€ํ™˜์— ๋”ฐ๋ผ ์ ์ ˆํžˆ ๋ณ€ํ•˜๋„๋ก ํ•ด.

ํ…์„œ ์ข…๋ฅ˜ ์ฐจ์ˆ˜ l ์„ฑ๋ถ„ ์ˆ˜ ํšŒ์ „์— ๋Œ€ํ•œ ๋ฐ˜์‘
์Šค์นผ๋ผ 0 1 ๋ณ€ํ•˜์ง€ ์•Š์Œ
๋ฒกํ„ฐ 1 3 ํšŒ์ „ ํ–‰๋ ฌ๋กœ ๋ณ€ํ™˜
ํ–‰๋ ฌ 2 5 (traceless) ๋” ๋ณต์žกํ•œ ๋ณ€ํ™˜

ํšŒ์ „์— ๋Œ€ํ•œ ๋ฐ˜์‘์€ ๋น„๊ฐ€์•ฝ ํ‘œํ˜„(Irreducible Representation)์œผ๋กœ ๊ธฐ์ˆ ํ•ด:

D^{(l)}(R) \in \mathbb{R}^{(2l+1) \times (2l+1)}

์ฐจ์ˆ˜ l์ธ ํŠน์„ฑ f^{(l)}๋Š” ํšŒ์ „ R์— ์˜ํ•ด ์ด๋ ‡๊ฒŒ ๋ณ€ํ™˜๋ผ:

f^{(l)} \mapsto D^{(l)}(R) \cdot f^{(l)}

๐Ÿ”— ๋ฉ”์‹œ์ง€ ํŒจ์‹ฑ๊ณผ ๋“ฑ๋ณ€์„ฑ

๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์—์„œ ์ž์ฃผ ์“ฐ๋Š” ๋ฉ”์‹œ์ง€ ํŒจ์‹ฑ(Message Passing)๋„ ๋“ฑ๋ณ€ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด:

h_i' = \phi\left(h_i, \sum_{j \in \mathcal{N}(i)} \psi(h_i, h_j, e_{ij})\right)

์—ฌ๊ธฐ์„œ: - h_i: ๋…ธ๋“œ i์˜ ํŠน์„ฑ - \mathcal{N}(i): i์˜ ์ด์›ƒ ๋…ธ๋“œ๋“ค - e_{ij}: ๊ฐ„์„  ํŠน์„ฑ (์˜ˆ: ๋‘ ์  ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ) - \phi, \psi: ๋“ฑ๋ณ€ ํ•จ์ˆ˜๋“ค

ํ•ต์‹ฌ: ๊ฑฐ๋ฆฌ \|x_i - x_j\|๋Š” SE(3)-๋ถˆ๋ณ€์ด์•ผ! ํšŒ์ „ํ•˜๊ฑฐ๋‚˜ ์ด๋™ํ•ด๋„ ๋‘ ์  ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋Š” ๋ณ€ํ•˜์ง€ ์•Š์œผ๋‹ˆ๊นŒ.


7์žฅ: ๋กœ๋ด‡ ํ•™์Šต์—์˜ ์‘์šฉ

๐ŸŽ“ ๋ชจ๋ฐฉ ํ•™์Šต (Imitation Learning)

์‚ฌ๋žŒ์ด ๋กœ๋ด‡์—๊ฒŒ ์‹œ๋ฒ”์„ ๋ณด์—ฌ์ฃผ๋ฉด, ๋กœ๋ด‡์ด ๊ทธ๊ฑธ ๋”ฐ๋ผ ํ•˜๋Š” ๊ฑฐ์•ผ.

๋ฌธ์ œ: ์‹œ๋ฒ”์„ ๋ณด์ธ ์œ„์น˜๋ž‘ ์‹ค์ œ ์ž‘์—… ์œ„์น˜๊ฐ€ ๋‹ค๋ฅด๋ฉด?

๊ธฐ์กด ๋ฐฉ๋ฒ•: ์ˆ˜๋งŽ์€ ๋‹ค๋ฅธ ์œ„์น˜์—์„œ ์‹œ๋ฒ”์„ ๋ณด์—ฌ์ค˜์•ผ ํ•ด.

SE(3)-๋“ฑ๋ณ€ ๋ฐฉ๋ฒ•: ํ•˜๋‚˜์˜ ์‹œ๋ฒ”๋งŒ์œผ๋กœ๋„, ๋‹ค๋ฅธ ์œ„์น˜์™€ ๊ฐ๋„์— ์ž๋™์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•ด!

์ˆ˜ํ•™์ ์œผ๋กœ, ์ •์ฑ…(policy) \pi๊ฐ€ ๋“ฑ๋ณ€์ด๋ฉด:

\pi(g \cdot s) = g \cdot \pi(s)

์ƒํƒœ s๋ฅผ ๋ณ€ํ™˜ํ•˜๋ฉด, ํ–‰๋™๋„ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ๋ณ€ํ™˜๋ผ.

๐ŸŽฎ ๊ฐ•ํ™” ํ•™์Šต (Reinforcement Learning)

๋กœ๋ด‡์ด ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ํ†ตํ•ด ์Šค์Šค๋กœ ๋ฐฐ์šฐ๋Š” ๋ฐฉ๋ฒ•์ด์•ผ.

๋ฌธ์ œ: ์ƒ˜ํ”Œ ํšจ์œจ์ด ๋„ˆ๋ฌด ๋‚ฎ์•„. ์ˆ˜๋ฐฑ๋งŒ ๋ฒˆ ์‹œ๋„ํ•ด์•ผ ๊ฒจ์šฐ ๋ฐฐ์›Œ.

SE(3)-๋“ฑ๋ณ€ ๋ฐฉ๋ฒ•: ํ•˜๋‚˜์˜ ๊ฒฝํ—˜์—์„œ ๋Œ€์นญ์„ฑ์„ ์ด์šฉํ•ด ์—ฌ๋Ÿฌ ๊ฒฝํ—˜์„ โ€œ๊ณต์งœ๋กœโ€ ์–ป์„ ์ˆ˜ ์žˆ์–ด!

์˜ˆ๋ฅผ ๋“ค์–ด, ์ปต์„ ํŠน์ • ๊ฐ๋„์—์„œ ์ง‘๋Š” ๋ฒ•์„ ๋ฐฐ์› ๋‹ค๋ฉด, ๋Œ€์นญ์„ฑ์„ ์ด์šฉํ•ด ๋‹ค๋ฅธ ๋ชจ๋“  ๊ฐ๋„์—์„œ ์ง‘๋Š” ๋ฒ•๋„ ์ž๋™์œผ๋กœ ์•„๋Š” ๊ฑฐ์•ผ.

์ˆ˜ํ•™์ ์œผ๋กœ, Q-ํ•จ์ˆ˜๊ฐ€ ๋ถˆ๋ณ€์ด๋ฉด:

Q(g \cdot s, g \cdot a) = Q(s, a)

์ƒํƒœ์™€ ํ–‰๋™์„ ๊ฐ™์ด ๋ณ€ํ™˜ํ•ด๋„ ๊ฐ€์น˜๋Š” ๋ณ€ํ•˜์ง€ ์•Š์•„.

๐Ÿ› ๏ธ ์‹ค์ œ ์‘์šฉ ์˜ˆ์‹œ

1. ๋ฌผ์ฒด ์ง‘๊ธฐ (Grasping)

  • ์ž…๋ ฅ: ๋ฌผ์ฒด์˜ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ
  • ์ถœ๋ ฅ: ์ง‘๋Š” ์œ„์น˜์™€ ๋ฐฉํ–ฅ (SE(3) ๋ณ€ํ™˜!)
  • ๋“ฑ๋ณ€ ์š”๊ตฌ์‚ฌํ•ญ: ๋ฌผ์ฒด๋ฅผ ๋Œ๋ฆฌ๋ฉด, ์ง‘๋Š” ์ž์„ธ๋„ ๊ฐ™์ด ๋Œ์•„์•ผ ํ•ด

2. ๊ถค์  ๊ณ„ํš (Trajectory Planning)

  • ์ž…๋ ฅ: ์‹œ์ž‘ ์ž์„ธ, ๋ชฉํ‘œ ์ž์„ธ
  • ์ถœ๋ ฅ: ๊ฒฝ๋กœ (SE(3) ๋ณ€ํ™˜๋“ค์˜ ์‹œํ€€์Šค)
  • ๋“ฑ๋ณ€ ์š”๊ตฌ์‚ฌํ•ญ: ์ „์ฒด ๋ฌธ์ œ๋ฅผ ๋ณ€ํ™˜ํ•˜๋ฉด, ํ•ด๋‹ต ๊ฒฝ๋กœ๋„ ๊ฐ™์ด ๋ณ€ํ™˜

3. ํž˜ ์ œ์–ด (Force Control)

  • ๋กœ๋ด‡์ด ํ‘œ๋ฉด์„ ๋”ฐ๋ผ ์ผ์ •ํ•œ ํž˜์„ ์œ ์ง€ํ•˜๋ฉฐ ์ด๋™
  • ์ขŒํ‘œ๊ณ„๊ฐ€ ๋ฐ”๋€Œ์–ด๋„ ์ œ์–ด ๋ฒ•์น™์€ ๋™์ผํ•˜๊ฒŒ ์ž‘๋™ํ•ด์•ผ ํ•ด

8์žฅ: ๊ธฐํ•˜ํ•™์  ์ œ์–ด์™€ SE(3)

๐ŸŽฏ ์™œ ๊ธฐํ•˜ํ•™์  ์ œ์–ด๊ฐ€ ํ•„์š”ํ• ๊นŒ?

์ „ํ†ต์ ์ธ ์ œ์–ด ์ด๋ก ์€ ์ฃผ๋กœ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„ \mathbb{R}^n์—์„œ ๋™์ž‘ํ•ด. ํ•˜์ง€๋งŒ ๋กœ๋ด‡์˜ ์ž์„ธ(pose)๋Š” \mathbb{R}^n์ด ์•„๋‹ˆ๋ผ SE(3) ์œ„์˜ ์ ์ด์•ผ.

์˜ˆ๋ฅผ ๋“ค์–ด, ๋‘ ํšŒ์ „ ์‚ฌ์ด์˜ โ€œํ‰๊ท โ€์„ ์–ด๋–ป๊ฒŒ ๊ตฌํ• ๊นŒ? ๋‹จ์ˆœํžˆ ํ–‰๋ ฌ์„ ๋”ํ•ด์„œ 2๋กœ ๋‚˜๋ˆ„๋ฉด ์•ˆ ๋ผ โ€” ๊ฒฐ๊ณผ๊ฐ€ ํšŒ์ „ ํ–‰๋ ฌ์ด ์•„๋‹ ์ˆ˜ ์žˆ๊ฑฐ๋“ !

๊ธฐํ•˜ํ•™์  ์ œ์–ด๋Š” SE(3)์˜ ๊ตฌ์กฐ๋ฅผ ์กด์ค‘ํ•˜๋ฉด์„œ ์ œ์–ด ๋ฒ•์น™์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฑฐ์•ผ.

๐Ÿ“ ์˜ค์ฐจ ํ•จ์ˆ˜์˜ ์ •์˜

๋‘ SE(3) ์ž์„ธ T_1, T_2 ์‚ฌ์ด์˜ ์˜ค์ฐจ๋ฅผ ์–ด๋–ป๊ฒŒ ์ •์˜ํ• ๊นŒ?

์ƒ๋Œ€ ๋ณ€ํ™˜์„ ์‚ฌ์šฉํ•ด:

T_e = T_1^{-1} T_2

์ด๊ฑด โ€œ์ฒซ ๋ฒˆ์งธ ์ž์„ธ์—์„œ ๋‘ ๋ฒˆ์งธ ์ž์„ธ๋กœ ๊ฐ€๋ ค๋ฉด ์–ด๋–ค ๋ณ€ํ™˜์ด ํ•„์š”ํ•œ๊ฐ€?โ€๋ฅผ ๋‚˜ํƒ€๋‚ด.

๋ฆฌ ๋Œ€์ˆ˜๋กœ ๋ณ€ํ™˜ํ•˜๋ฉด:

\xi_e = \log(T_e)^\vee \in \mathbb{R}^6

์ด 6์ฐจ์› ๋ฒกํ„ฐ๊ฐ€ ๋ฐ”๋กœ ์ž์„ธ ์˜ค์ฐจ์•ผ.

โš™๏ธ PD ์ œ์–ด๊ธฐ์˜ ๊ธฐํ•˜ํ•™์  ๋ฒ„์ „

์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ์˜ PD ์ œ์–ด๊ธฐ:

u = -K_p e - K_d \dot{e}

SE(3)์—์„œ์˜ ๊ธฐํ•˜ํ•™์  ๋ฒ„์ „:

u = -K_p \xi_e - K_d \dot{\xi}_e

์—ฌ๊ธฐ์„œ \xi_e๋Š” ์œ„์—์„œ ์ •์˜ํ•œ ์ž์„ธ ์˜ค์ฐจ์•ผ.

์ด ์ œ์–ด๊ธฐ๋Š” SE(3)-๋“ฑ๋ณ€์ด์•ผ:

u(g \cdot T, g \cdot T_d) = g \cdot u(T, T_d)

์ขŒํ‘œ๊ณ„๋ฅผ ๋ฐ”๊ฟ”๋„ ์ œ์–ด ๋ฒ•์น™์ด ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ์ž‘๋™ํ•œ๋‹ค๋Š” ๋œป์ด์ง€!


9์žฅ: ์ˆ˜์‹ ์ด์ •๋ฆฌ

ํ•ต์‹ฌ ์ •์˜๋“ค

1. ๊ตฐ (Group) (G, \cdot)

\begin{align} &\text{๋‹ซํž˜:} \quad g_1 \cdot g_2 \in G \\ &\text{๊ฒฐํ•ฉ๋ฒ•์น™:} \quad (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3) \\ &\text{ํ•ญ๋“ฑ์›:} \quad \exists e : g \cdot e = e \cdot g = g \\ &\text{์—ญ์›:} \quad \forall g, \exists g^{-1} : g \cdot g^{-1} = e \end{align}

2. SO(3) โ€” 3D ํšŒ์ „๊ตฐ

SO(3) = \{R \in \mathbb{R}^{3 \times 3} : R^T R = I, \det(R) = 1\}

3. SE(3) โ€” ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ

SE(3) = \left\{ T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} : R \in SO(3), p \in \mathbb{R}^3 \right\}

4. ๋“ฑ๋ณ€์„ฑ (Equivariance)

f(\rho_X(g) \cdot x) = \rho_Y(g) \cdot f(x), \quad \forall g \in G

5. ๋ถˆ๋ณ€์„ฑ (Invariance)

f(g \cdot x) = f(x), \quad \forall g \in G

6. ๋ฆฌ ๋Œ€์ˆ˜ \mathfrak{so}(3)

\omega^\wedge = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}, \quad \omega \in \mathbb{R}^3

7. ๋ฆฌ ๋Œ€์ˆ˜ \mathfrak{se}(3)

\xi^\wedge = \begin{bmatrix} \omega^\wedge & v \\ 0 & 0 \end{bmatrix}, \quad \xi = \begin{bmatrix} v \\ \omega \end{bmatrix} \in \mathbb{R}^6

8. ์ง€์ˆ˜ ์‚ฌ์ƒ (๋กœ๋“œ๋ฆฌ๊ฒŒ์Šค ๊ณต์‹)

\exp(\omega^\wedge) = I + \frac{\sin\theta}{\theta}\omega^\wedge + \frac{1-\cos\theta}{\theta^2}(\omega^\wedge)^2, \quad \theta = \|\omega\|


10์žฅ: ๋งˆ๋ฌด๋ฆฌ โ€” ์™œ ์ด๊ฒŒ ์ค‘์š”ํ• ๊นŒ?

๐Ÿš€ ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์˜ ์žฅ์ 

  1. ์ƒ˜ํ”Œ ํšจ์œจ: ์ ์€ ๋ฐ์ดํ„ฐ๋กœ ๋” ๋นจ๋ฆฌ ํ•™์Šต
  2. ์ผ๋ฐ˜ํ™”: ๋ณธ ์  ์—†๋Š” ์ž์„ธ๋‚˜ ์œ„์น˜์—๋„ ์ž˜ ์ž‘๋™
  3. ๋ฌผ๋ฆฌ์  ์ผ๊ด€์„ฑ: ์ž์—ฐ์˜ ๋Œ€์นญ์„ฑ์„ ์กด์ค‘
  4. ํ•ด์„ ๊ฐ€๋Šฅ์„ฑ: ์™œ ๊ทธ๋Ÿฐ ๊ฒฐ์ •์„ ๋‚ด๋ ธ๋Š”์ง€ ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์›€

โ€œ์ž์—ฐ์€ ๋‹จ์ˆœํ•จ์„ ์ข‹์•„ํ•ด. ๋งŒ์•ฝ ๋„ค ์ด๋ก ์ด ๋„ˆ๋ฌด ๋ณต์žกํ•˜๋‹ค๋ฉด, ์•„๋งˆ ๋ญ”๊ฐ€ ๋น ๋œจ๋ฆฐ ๊ฑฐ์•ผ.โ€

SE(3)-๋“ฑ๋ณ€์„ฑ์ด ๋ณต์žกํ•ด ๋ณด์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‚ฌ์‹ค ์ด๊ฑด ์ž์—ฐ์˜ ๋‹จ์ˆœํ•จ์„ ์กด์ค‘ํ•˜๋Š” ๊ฒƒ์ด์•ผ.

๋ฌผ์ฒด๋ฅผ ๋Œ๋ฆฌ๋ฉด ์ง‘๋Š” ์ž์„ธ๋„ ๋Œ์•„์•ผ ํ•˜๋Š” ๊ฑด ๋‹น์—ฐํ•œ ๊ฑฐ์ž–์•„? ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์€ ์ด โ€œ๋‹น์—ฐํ•จโ€์„ ์ˆ˜ํ•™์œผ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ๋ฟ์ด์•ผ.

๋กœ๋ด‡์ด ์„ธ์ƒ์„ ์šฐ๋ฆฌ์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ดํ•ดํ•˜๋ ค๋ฉด, ์ด๋Ÿฐ ๊ธฐ๋ณธ์ ์ธ ๋Œ€์นญ์„ฑ์„ ์•Œ์•„์•ผ ํ•ด. ๊ทธ๋ฆฌ๊ณ  ์ด์ œ ๋„ˆ๋„ ๊ทธ ๋น„๋ฐ€์„ ์•Œ๊ฒŒ ๋์–ด!


๐Ÿ“š ๋” ๊ณต๋ถ€ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด

  1. ๊ตฐ๋ก  ๊ธฐ์ดˆ: โ€œGroup Theory in a Nutshell for Physicistsโ€ โ€” Anthony Zee
  2. ๊ธฐํ•˜ํ•™์  ๋”ฅ๋Ÿฌ๋‹: โ€œGeometric Deep Learningโ€ โ€” Bronstein et al.
  3. ๋กœ๋ด‡ ์—ญํ•™: โ€œA Mathematical Introduction to Robotic Manipulationโ€ โ€” Murray, Li, Sastry
  4. ์ด ๋…ผ๋ฌธ ์›๋ณธ: Seo et al., โ€œSE(3)-Equivariant Robot Learning and Control: A Tutorial Surveyโ€ (arXiv:2503.09829)

โ›๏ธ Dig Review

โ›๏ธ Dig โ€” Go deep, uncover the layers. Dive into technical detail.

1. ์„œ๋ก  (Introduction)

1.1 ๋ฐฐ๊ฒฝ: ๋”ฅ๋Ÿฌ๋‹๊ณผ ๋กœ๋ณดํ‹ฑ์Šค์˜ ๋งŒ๋‚จ

์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์€ ๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์— ํ˜๋ช…์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์™”๋‹ค. ๋ชจ๋ฐฉ ํ•™์Šต(Imitation Learning), ๊ฐ•ํ™” ํ•™์Šต(Reinforcement Learning), ๊ทธ๋ฆฌ๊ณ  ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜์˜ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ธ์‹ ๋ฐ ์˜์‚ฌ๊ฒฐ์ • ๊ธฐ์ˆ ์ด ๋กœ๋ด‡์ด ๋ณต์žกํ•œ ํ™˜๊ฒฝ์„ ์ดํ•ดํ•˜๊ณ  ์ ์‘ํ•˜๋Š” ๋ฐ ํฌ๊ฒŒ ๊ธฐ์—ฌํ•˜๊ณ  ์žˆ๋‹ค.

1.2 ๋ฌธ์ œ์ : ๊ธฐ์กด ๋”ฅ๋Ÿฌ๋‹์˜ ํ•œ๊ณ„

ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ ๋”ฅ๋Ÿฌ๋‹๊ณผ ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์—๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค:

  • ๋Œ€์นญ์„ฑ(Symmetry)๊ณผ ๋ถˆ๋ณ€์„ฑ(Invariance)์„ ๋ณธ์งˆ์ ์œผ๋กœ ๋‹ค๋ฃจ์ง€ ๋ชปํ•จ
  • ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์ด๋‚˜ ๊ด‘๋ฒ”์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(Data Augmentation)์ด ํ•„์š”ํ•จ
  • ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ•™์Šต ํšจ์œจ์ด ๋–จ์–ด์ง€๊ณ , ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ๋„ ์ œํ•œ์ ์ž„

1.3 ํ•ด๊ฒฐ์ฑ…: ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง (Equivariant Neural Networks)

๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์€ ๋Œ€์นญ์„ฑ๊ณผ ๋ถˆ๋ณ€์„ฑ์„ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ ์ž์ฒด์— ๋ช…์‹œ์ ์œผ๋กœ ํ†ตํ•ฉํ•จ์œผ๋กœ์จ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ํŠนํžˆ SE(3)-๋“ฑ๋ณ€ ๋ชจ๋ธ์€ 3D ๊ณต๊ฐ„์—์„œ์˜ ํšŒ์ „๊ณผ ํ‰ํ–‰์ด๋™ ๋Œ€์นญ์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ฐ ๊ธฐ๋ฐ˜ ๋กœ๋ด‡ ์กฐ์ž‘(Visual Robotic Manipulation)์—์„œ ๋›ฐ์–ด๋‚œ ํšจ์œจ์„ฑ๊ณผ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.

1.4 ๋…ผ๋ฌธ์˜ ๊ธฐ์—ฌ

์ด ์„œ๋ฒ ์ด ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์—ฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  1. ๊ทธ๋ฃน ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹๊ณผ ์ œ์–ด์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ๋ฆฌ๋ทฐ
  2. ๊ทธ๋ฃน ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹์˜ ์ˆ˜ํ•™์  ๊ฐœ๋…๊ณผ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ์„ค๋ช…
  3. ๊ธฐํ•˜ํ•™์  ์ œ์–ด(Geometric Control) ๊ด€์ ์—์„œ์˜ ๊ทธ๋ฃน ๋“ฑ๋ณ€ ์ œ์–ด ๋ฐฉ๋ฒ•๋ก  ๋ฆฌ๋ทฐ
  4. ๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ํ˜ผ์šฉ๋˜๋Š” ํ‘œ๊ธฐ๋ฒ•๋“ค์„ ํ†ต์ผ๋œ ์ˆ˜ํ•™์  ํ‘œ๊ธฐ๋ฒ•์œผ๋กœ ์ •๋ฆฌ

2. ์‚ฌ์ „ ์ง€์‹ (Preliminaries)

์ด ์„น์…˜์—์„œ๋Š” ๊ธฐํ•˜ํ•™์  ๋”ฅ๋Ÿฌ๋‹๊ณผ ์ œ์–ด๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜ํ•™์  ๊ธฐ์ดˆ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ํŠนํžˆ SE(3)๋Š” ๊ฐ•์ฒด ๋ณ€ํ™˜(Rigid Body Transformation)์„ ๋ถ„์„ํ•˜๊ณ  ๋กœ๋ณดํ‹ฑ์Šค์˜ ๋‹ค์–‘ํ•œ ๋น„์ „ ๋ฐ ์กฐ์ž‘ ์ž‘์—…์— ํ•„์ˆ˜์ ์ธ ๊ฐœ๋…์ด๋‹ค.

2.1 ๊ตฐ (Groups)

2.1.1 ๊ตฐ์˜ ์ •์˜

๊ตฐ(Group) (G, \cdot)์€ ์ง‘ํ•ฉ G์™€ ์ดํ•ญ ์—ฐ์‚ฐ โ€œ\cdotโ€๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๋‹ค์Œ ๋„ค ๊ฐ€์ง€ ๊ณต๋ฆฌ๋ฅผ ๋งŒ์กฑํ•ด์•ผ ํ•œ๋‹ค:

๊ณต๋ฆฌ ์ˆ˜ํ•™์  ํ‘œํ˜„ ์„ค๋ช…
๋‹ซํž˜ (Closure) \forall h, g \in G \Rightarrow h \cdot g \in G ๋‘ ์›์†Œ์˜ ์—ฐ์‚ฐ ๊ฒฐ๊ณผ๋„ ๊ตฐ์— ์†ํ•จ
ํ•ญ๋“ฑ์› (Identity) \exists 1 \in G : 1 \cdot g = g \cdot 1 = g ์—ฐ์‚ฐํ•ด๋„ ๋ณ€ํ•˜์ง€ ์•Š๋Š” ์›์†Œ ์กด์žฌ
์—ญ์› (Inverse) \forall g \in G, \exists g^{-1} : g^{-1} \cdot g = g \cdot g^{-1} = 1 ๋ชจ๋“  ์›์†Œ์— ์—ญ์› ์กด์žฌ
๊ฒฐํ•ฉ๋ฒ•์น™ (Associativity) (g \cdot h) \cdot f = g \cdot (h \cdot f) ์—ฐ์‚ฐ ์ˆœ์„œ ๊ด„ํ˜ธ ์œ„์น˜ ๋ฌด๊ด€

2.1.2 ๊ตฐ์˜ ์˜ˆ์‹œ

ํ‰ํ–‰์ด๋™๊ตฐ (Translation Group) (\mathbb{R}^n, +): - ์ง‘ํ•ฉ: \mathbb{R}^n์˜ ๋ฒกํ„ฐ๋“ค - ์—ฐ์‚ฐ: ๋ฒกํ„ฐ ๋ง์…ˆ, x_1 \cdot x_2 = x_1 + x_2 - ํ•ญ๋“ฑ์›: 1 = 0 (์›์ ) - ์—ญ์›: g^{-1} = -g

์ผ๋ฐ˜์„ ํ˜•๊ตฐ (General Linear Group) GL(n, \mathbb{R}): - ์ง‘ํ•ฉ: ์—ญํ–‰๋ ฌ์ด ์กด์žฌํ•˜๋Š” n \times n ์‹ค์ˆ˜ ํ–‰๋ ฌ๋“ค

GL(n, \mathbb{R}) := \{A \in \mathbb{R}^{n \times n} | \det(A) \neq 0\}

  • ์—ฐ์‚ฐ: ํ–‰๋ ฌ ๊ณฑ์…ˆ
  • ํ•ญ๋“ฑ์›: ๋‹จ์œ„ ํ–‰๋ ฌ I_n
  • ์—ญ์›: ์—ญํ–‰๋ ฌ A^{-1}

2.1.3 ๋ถ€๋ถ„๊ตฐ (Subgroup)

๋ถ€๋ถ„๊ตฐ์€ ๊ฐ™์€ ์—ฐ์‚ฐ ํ•˜์—์„œ ๊ตฐ ์ž์ฒด๊ฐ€ ๋˜๋Š” ๊ตฐ์˜ ๋ถ€๋ถ„์ง‘ํ•ฉ (H \subset G)์ด๋‹ค.

์ค‘์š”ํ•œ ๋ถ€๋ถ„๊ตฐ๋“ค:

๊ตฐ ์ •์˜ ์„ค๋ช…
GL^+(n, \mathbb{R}) \{A \in \mathbb{R}^{n \times n} \| \det(A) > 0\} ์–‘์˜ ํ–‰๋ ฌ์‹์„ ๊ฐ€์ง„ ํ–‰๋ ฌ
U(n) \{A \in \mathbb{C}^{n \times n} \| AA^* = I\} ์œ ๋‹ˆํ„ฐ๋ฆฌ ๊ตฐ
O(n) \{A \in \mathbb{R}^{n \times n} \| AA^T = I\} ์ง๊ต ๊ตฐ
SO(n) \{R \in \mathbb{R}^{n \times n} \| R^TR = RR^T = I, \det(R) = +1\} ํŠน์ˆ˜ ์ง๊ต ๊ตฐ (ํšŒ์ „ ํ–‰๋ ฌ)

2.1.4 ๊ตฐ ์ž‘์šฉ (Group Actions)

๊ตฐ G๊ฐ€ ์ง‘ํ•ฉ M์— ์ž‘์šฉํ•œ๋‹ค๋Š” ๊ฒƒ์€ ๋‹ค์Œ์„ ๋งŒ์กฑํ•˜๋Š” ์‚ฌ์ƒ G \times M \to M์ด ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

์ขŒ์ž‘์šฉ (Left Action): g_1 \circ (g_2 \circ p) = (g_1 \cdot g_2) \circ p, \quad e \circ p = p, \quad \forall g_1, g_2 \in G, p \in M

์šฐ์ž‘์šฉ (Right Action): (p \circ g_1) \circ g_2 = p \circ (g_1 \cdot g_2), \quad p \circ e = p

์˜ˆ์‹œ: 3์ฐจ์› ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ํšŒ์ „ ์ž‘์šฉ SO(3) \times \mathbb{R}^3 \to \mathbb{R}^3, \quad (R, p) \to R \circ p = Rp

2.1.5 ๋ฐ˜์ง์ ‘๊ณฑ (Semidirect Product)

๋‘ ๊ตฐ H์™€ N์ด ์žˆ๊ณ , H๊ฐ€ N์— ์ขŒ์ž‘์šฉ \theta_h : H \times N \to N์„ ํ•œ๋‹ค๋ฉด, ๋ฐ˜์ง์ ‘๊ณฑ N \rtimes H๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค:

(n, h) \cdot (n', h') = (n \cdot \theta_h(n'), h \cdot h') = (n \cdot (h \circ n'), h \cdot h')

2.1.6 ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ SE(3)

SE(3)๋Š” ๋ชจ๋“  ๊ฐ•์ฒด ๋ณ€ํ™˜(ํ‰ํ–‰์ด๋™๊ณผ ํšŒ์ „)์œผ๋กœ ๊ตฌ์„ฑ๋œ ๊ตฐ์œผ๋กœ, ํšŒ์ „-ํ‰ํ–‰์ด๋™ ๊ตฐ์ด๋ผ๊ณ ๋„ ๋ถˆ๋ฆฐ๋‹ค.

SE(n) = \mathbb{R}^n \rtimes SO(n)

๊ตฐ ์—ฐ์‚ฐ: g_1 \cdot g_2 = (p_1 + R_1 p_2, R_1 R_2)

์—ญ์›: g^{-1} = (-R^{-1}p, R^{-1})

์—ฌ๊ธฐ์„œ g_1 = (p_1, R_1), g_2 = (p_2, R_2)๋Š” SE(n)์˜ ์›์†Œ์ด๋‹ค.


2.2 ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ๊ณผ ๋ฆฌ ๋Œ€์ˆ˜ (Matrix Lie Groups and Algebras)

2.2.1 ๋ฆฌ ๊ตฐ (Lie Groups)

๋ฆฌ ๊ตฐ์€ ์—ฐ์†๊ตฐ์ด๋ฉด์„œ ๋™์‹œ์— ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๋‹ค์–‘์ฒด(Manifold)์ธ ๊ตฐ์ด๋‹ค. ์ฆ‰, ๊ตฐ ๊ตฌ์กฐ์™€ ๋งค๋„๋Ÿฌ์šด ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋™์‹œ์— ๊ฐ€์ง„๋‹ค.

๋ฆฌ ๊ตฐ์˜ ์˜ˆ์‹œ:

  • ํ‰ํ–‰์ด๋™๊ตฐ (\mathbb{R}^n, +)
  • ์ผ๋ฐ˜์„ ํ˜•๊ตฐ GL(n, \mathbb{R})
  • ํšŒ์ „๊ตฐ SO(n)
  • ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ SE(n)

ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ์€ ๊ฐ ์›์†Œ g \in G๊ฐ€ n \times n ํ–‰๋ ฌ์ด๊ณ , ๊ตฐ ์—ฐ์‚ฐ์ด ํ–‰๋ ฌ ๊ณฑ์…ˆ์ด๋ฉฐ, ๊ณฑ์…ˆ๊ณผ ์—ญ๋ณ€ํ™˜์ด ๋ชจ๋‘ ํ•ด์„์ (analytic)์ธ ๊ตฐ์ด๋‹ค.

2.2.2 ๋ฆฌ ๋Œ€์ˆ˜ (Lie Algebras)

๋‹จ์œ„ ํ–‰๋ ฌ I_n์— ๋งค์šฐ ๊ฐ€๊นŒ์šด ๊ตฐ ์›์†Œ๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž:

g(\varepsilon) = I_n + \varepsilon X, \quad |\varepsilon| \ll 1

์—ฌ๊ธฐ์„œ X \in \mathfrak{g} = T_{I_n}G๋Š” ์ƒ์„ฑ์ž(Generator)๋ผ ๋ถˆ๋ฆฌ๋ฉฐ, \mathfrak{g}๋Š” G์˜ ํ•ญ๋“ฑ์›์—์„œ์˜ ์ ‘์„  ๊ณต๊ฐ„(Tangent Space)์œผ๋กœ ๋ฆฌ ๋Œ€์ˆ˜๋ผ๊ณ  ๋ถˆ๋ฆฐ๋‹ค.

SO(2)์˜ ๋ฆฌ ๋Œ€์ˆ˜ ์˜ˆ์‹œ:

SO(2)์˜ ํšŒ์ „ ํ–‰๋ ฌ: R_\theta = R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}

ํ•ญ๋“ฑ์› ๊ทผ์ฒ˜์—์„œ์˜ ์„ญ๋™: R(\varepsilon) \approx I_2 + \varepsilon \frac{\partial R(\theta)}{\partial \theta}\bigg|_{\theta=0} = I_2 + \varepsilon X

์ƒ์„ฑ์ž: X = \frac{\partial R(\theta)}{\partial \theta}\bigg|_{\theta=0} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}

๋”ฐ๋ผ์„œ \mathfrak{so}(2) = \{A \in \mathbb{R}^{2 \times 2} | A^T = -A\}, ์ฆ‰ ๋ชจ๋“  2 \times 2 ๋ฐ˜๋Œ€์นญ ํ–‰๋ ฌ์˜ ์ง‘ํ•ฉ์ด๋‹ค.

2.2.3 ์ง€์ˆ˜ ์‚ฌ์ƒ (Exponential Map)

๋ฌดํ•œ์†Œ ๋ณ€ํ™˜ R(\varepsilon) = I_2 + \varepsilon X๋ฅผ ๋ฌดํ•œํžˆ ๋งŽ์ด ๊ณฑํ•˜๋ฉด ์œ ํ•œ ๋ณ€ํ™˜์„ ์–ป๋Š”๋‹ค:

R(\theta) = \lim_{N \to \infty} \left(I_2 + \frac{\theta}{N}X\right)^N = \exp(X\theta)

์ผ๋ฐ˜์ ์ธ ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ์—์„œ, ๋ฆฌ ๋Œ€์ˆ˜ ์›์†Œ X \in \mathfrak{g}์™€ t \in \mathbb{R}์— ๋Œ€ํ•ด:

g(t) = \exp(tX) = \sum_{n=0}^{\infty} \frac{1}{n!}(tX)^n

์ค‘์š”ํ•œ ์„ฑ์งˆ: \frac{d}{dt}\exp(tX)\bigg|_{t=0} = X

๋กœ๊ทธ ์‚ฌ์ƒ (Log Map): ์ง€์ˆ˜ ์‚ฌ์ƒ์˜ ์—ญํ•จ์ˆ˜ \log : G \to \mathfrak{g}, \quad \text{if } g = \exp(X), \text{ then } X = \log(g)

2.2.4 Hat-map๊ณผ Vee-map

๋ฆฌ ๋Œ€์ˆ˜ \mathfrak{g}๊ฐ€ l์ฐจ์› ๋ฒกํ„ฐ ๊ณต๊ฐ„์ผ ๋•Œ:

Hat-map \widehat{(\cdot)} : \mathbb{R}^l \to \mathfrak{g}: ๋ฒกํ„ฐ๋ฅผ ๋ฆฌ ๋Œ€์ˆ˜ ์›์†Œ๋กœ ๋ณ€ํ™˜

Vee-map (\cdot)^\vee : \mathfrak{g} \to \mathbb{R}^l: ๋ฆฌ ๋Œ€์ˆ˜ ์›์†Œ๋ฅผ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜

2.2.5 ๋ฆฌ ๊ด„ํ˜ธ (Lie Bracket)

๋ฆฌ ๋Œ€์ˆ˜ \mathfrak{g}๋Š” ๋ฆฌ ๊ด„ํ˜ธ ์—ฐ์‚ฐ [\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}๋ฅผ ๊ฐ–์ถ”๋ฉฐ, ๋‹ค์Œ์„ ๋งŒ์กฑํ•œ๋‹ค:

  • ์Œ์„ ํ˜• (Bilinear)
  • ๋ฐ˜๋Œ€์นญ (Antisymmetric): [a, b] = -[b, a]
  • ์•ผ์ฝ”๋น„ ํ•ญ๋“ฑ์‹ (Jacobi identity): [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

๋ฆฌ ๊ด„ํ˜ธ๋Š” ๋น„๊ฐ€ํ™˜์„ฑ์˜ ๋ฌดํ•œ์†Œ ์ธก์ •์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.

\mathfrak{so}(3)์˜ ๊ธฐ์ € ๋ฒกํ„ฐ:

L_x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad L_y = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad L_z = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}

๋ฆฌ ๊ด„ํ˜ธ ๊ด€๊ณ„: [L_x, L_y] = L_z (๋ฐ ์ˆœํ™˜ ์น˜ํ™˜)

๋ฌผ๋ฆฌ์  ์˜๋ฏธ: x์ถ• ํšŒ์ „ ํ›„ y์ถ• ํšŒ์ „๊ณผ ๊ทธ ์—ญ์ˆœ์˜ ์ฐจ์ด๋Š” z์ถ• ์ฃผ์œ„์˜ ์ž‘์€ ํšŒ์ „์ด๋‹ค.

2.2.6 ๊ตฐ ํ‘œํ˜„ (Group Representation)

์ •์˜: ๋ฆฌ ๊ตฐ G์˜ ํ‘œํ˜„์€ ๋‹ค์Œ์„ ๋งŒ์กฑํ•˜๋Š” ์‚ฌ์ƒ D : G \to GL(V)์ด๋‹ค:

D(g)D(h) = D(g \cdot h), \quad \forall g, h \in G

๋™์น˜ ํ‘œํ˜„ (Equivalent Representations): ๊ธฐ์ € ๋ณ€ํ™˜ U๊ฐ€ ์กด์žฌํ•˜์—ฌ: D'(g) = UD(g)U^{-1}, \quad \forall g \in G

๊ธฐ์•ฝ ํ‘œํ˜„ (Irreducible Representation): ๋” ์ด์ƒ ์ž‘์€ ๋ถ€๋ถ„๊ณต๊ฐ„์œผ๋กœ ๋ถ„ํ•ด(๋ธ”๋ก ๋Œ€๊ฐํ™”)ํ•  ์ˆ˜ ์—†๋Š” ํ‘œํ˜„์ด๋‹ค.

2.2.7 ์ขŒ-์šฐ ํ‰ํ–‰์ด๋™ (Left and Right Translations)

g, h \in G์— ๋Œ€ํ•ด:

์ขŒํ‰ํ–‰์ด๋™: L_g : G \to G, L_g(h) = gh

์šฐํ‰ํ–‰์ด๋™: R_g : G \to G, R_g(h) = hg

์ขŒ๋ถˆ๋ณ€ ๋ฒกํ„ฐ์žฅ: X(gh) = dL_g(h)X(h)๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๋ฒกํ„ฐ์žฅ

ํ–‰๋ ฌ ๋ฆฌ ๊ตฐ์—์„œ: X(g) = gX(1)

2.2.8 ์ˆ˜๋ฐ˜ ํ‘œํ˜„ (Adjoint Representations)

๋‚ด๋ถ€ ์ž๊ธฐ๋™ํ˜•์‚ฌ์ƒ: \Psi_g(h) = R_{g^{-1}}L_g(h) = ghg^{-1}

๋Œ€์ˆ˜๋ฐ˜ ์—ฐ์‚ฐ์ž (Large Adjoint): \text{Ad}_g : G \times \mathfrak{g} \to \mathfrak{g}

\text{Ad}_g X := \frac{d}{dt}(g \cdot \exp(tX) \cdot g^{-1})|_{t=0} = gXg^{-1}

์†Œ์ˆ˜๋ฐ˜ ์—ฐ์‚ฐ์ž (Small adjoint): \text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})

\text{ad}_X Y = [X, Y]

Ad์™€ ad์˜ ๊ด€๊ณ„:

\text{Ad}_{(\exp tX)} = \exp(t \cdot \text{ad}_{(X)})

ํ•ฉ์„ฑ ๊ทœ์น™:

\text{Ad}_g \text{Ad}_h(X) = \text{Ad}_{gh}(X)

2.2.9 ํ•จ์ˆ˜์˜ ๋ฆฌ ๋ฏธ๋ถ„ (Lie Derivative)

X \in \mathfrak{g}์ด๊ณ  f : G \to \mathbb{R}๊ฐ€ ํ•ด์„์ ์ผ ๋•Œ:

\mathcal{L}_X f(g) := \lim_{t \to 0} \frac{f(g\exp(tX)) - f(g)}{t} = \frac{d}{dt}f(g\exp(tX))\bigg|_{t=0}


2.3 ํŠน์ˆ˜ ์œ ํด๋ฆฌ๋“œ ๊ตฐ SE(3)

SE(3)๋Š” ๋กœ๋ณดํ‹ฑ์Šค์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ตฐ์œผ๋กœ, ์ด ์„น์…˜์—์„œ ์ž์„ธํžˆ ๋‹ค๋ฃฌ๋‹ค.

2.3.1 SE(3)์˜ ๋ฆฌ ๊ตฐ ์„ฑ์งˆ

SE(3)์—์„œ์˜ ๊ฐ•์ฒด ์šด๋™

์ขŒํ‘œ๊ณ„ \{A\} (๊ด€์„ฑ ์ขŒํ‘œ๊ณ„)์— ๋Œ€ํ•œ ๊ฐ•์ฒด์— ๋ถ€์ฐฉ๋œ ์ขŒํ‘œ๊ณ„ \{B\}์˜ ์œ„์น˜์™€ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์ž.

SE(3) = \{(p, R) : p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \rtimes SO(3)

์›์†Œ g = (p, R) \in SE(3)๋Š”:

  • ๊ฐ•์ฒด์˜ ๋ฐฐ์น˜(Configuration) ์‚ฌ์–‘
  • ์ขŒํ‘œ ๋ณ€ํ™˜ (ํ•œ ํ”„๋ ˆ์ž„์—์„œ ๋‹ค๋ฅธ ํ”„๋ ˆ์ž„์œผ๋กœ)

์  q์— ๋Œ€ํ•œ ๊ฐ•์ฒด ๋ณ€ํ™˜์˜ ์ž‘์šฉ: g \circ q = p + Rq

๋™์ฐจ ํ–‰๋ ฌ ํ‘œํ˜„ (Homogeneous Matrix Representation)

\bar{g} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}, \quad R \in SO(3), p \in \mathbb{R}^3

๋™์ฐจ ์ขŒํ‘œ๋ฅผ ์‚ฌ์šฉํ•œ ์ขŒํ‘œ ๋ณ€ํ™˜: \bar{q}_a = \begin{bmatrix} q_a \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & p_{ab} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_b \\ 1 \end{bmatrix} = \bar{g}_{ab}\bar{q}_b

SE(3)์˜ ๊ตฐ ์„ฑ์งˆ ํ™•์ธ:

  • ๋‹ซํž˜: g_1, g_2 \in SE(3) \Rightarrow g_1g_2 \in SE(3)
  • ํ•ญ๋“ฑ์›: I_4 \in SE(3)
  • ์—ญ์›: g^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \in SE(3)
  • ๊ฒฐํ•ฉ๋ฒ•์น™ ์„ฑ๋ฆฝ

2.3.2 SE(3)์˜ ๋ฆฌ ๋Œ€์ˆ˜ ์„ฑ์งˆ

\mathfrak{so}(3)์™€ \mathfrak{se}(3)์˜ Hat-map๊ณผ Vee-map

\mathfrak{so}(3)์˜ Hat-map \widehat{(\cdot)} : \mathbb{R}^3 \to \mathfrak{so}(3):

\hat{\omega} = -\hat{\omega}^T = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}

\hat{\omega}v = \omega \times v (๋ฒกํ„ฐ์˜ ์™ธ์ )

\mathfrak{se}(3)์˜ Hat-map \widehat{(\cdot)} : \mathbb{R}^6 \to \mathfrak{se}(3):

\hat{\xi} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \in \mathfrak{se}(3) \subset \mathbb{R}^{4 \times 4}, \quad \forall \xi = \begin{bmatrix} v \\ \omega \end{bmatrix} \in \mathbb{R}^6

ํŠธ์œ„์ŠคํŠธ (Twist)

\mathfrak{se}(3)์˜ ์›์†Œ๋ฅผ ํŠธ์œ„์ŠคํŠธ ๋˜๋Š” ์œ ํด๋ฆฌ๋“œ ๊ตฐ์˜ (๋ฌดํ•œ์†Œ) ์ƒ์„ฑ์ž๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

g \in SE(3)๊ฐ€ \hat{\xi} \in \mathfrak{se}(3)์— ์ž‘์šฉํ•˜๋Š” ์ˆ˜๋ฐ˜ ์ž‘์šฉ:

\text{Ad}_g \hat{\xi} = g\hat{\xi}g^{-1}

๋ฌผ์ฒด ์†๋„ (Body Velocity)์™€ ๊ณต๊ฐ„ ์†๋„ (Spatial Velocity)

์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๊ณก์„  g_{ab}(t) = \begin{bmatrix} R_{ab}(t) & p_{ab}(t) \\ 0 & 1 \end{bmatrix}์— ๋Œ€ํ•ด:

๊ณต๊ฐ„ ์†๋„:

\hat{V}^s_{ab} := \dot{g}_{ab}g^{-1}_{ab}

V^s_{ab} = \begin{bmatrix} v^s_{ab} \\ \omega^s_{ab} \end{bmatrix} = \begin{bmatrix} -\dot{R}_{ab}R^T_{ab}p_{ab} + \dot{p}_{ab} \\ (\dot{R}_{ab}R^T_{ab})^\vee \end{bmatrix}

๋ฌผ์ฒด ์†๋„:

\hat{V}^b_{ab} := g^{-1}_{ab}\dot{g}_{ab}

V^b_{ab} = \begin{bmatrix} v^b_{ab} \\ \omega^b_{ab} \end{bmatrix} = \begin{bmatrix} R^T_{ab}\dot{p}_{ab} \\ (R^T_{ab}\dot{R}_{ab})^\vee \end{bmatrix}

์†๋„ ๋ณ€ํ™˜ (Adjoint Transformation):

V^s_{ab} = \text{Ad}_{g_{ab}} V^b_{ab}

\text{Ad}_g = \begin{bmatrix} R & \hat{p}R \\ 0 & R \end{bmatrix}, \quad g \in SE(3)

\text{Ad}^{-1}_g = \begin{bmatrix} R^T & -R^T\hat{p} \\ 0 & R^T \end{bmatrix} = \text{Ad}_{g^{-1}}

๋ Œ์น˜ (Wrench)

๋ Œ์น˜๋Š” ๊ฐ•์ฒด์— ์ž‘์šฉํ•˜๋Š” ํž˜๊ณผ ๋ชจ๋ฉ˜ํŠธ์˜ ์Œ์œผ๋กœ, ์ผ๋ฐ˜ํ™”๋œ ํž˜์ด๋‹ค:

F = \begin{bmatrix} f \\ \tau \end{bmatrix} \in \mathbb{R}^6

๋ฌดํ•œ์†Œ ์ผ:

\delta W = \langle V^b_{ab}, F^b \rangle = (v^{b^T}_{ab}f + \omega^{b^T}_{ab}\tau)

๋ Œ์น˜์˜ ์ขŒํ‘œ ๋ณ€ํ™˜:

F_c = \text{Ad}^T_{g_{bc}} F_b

\mathfrak{se}(3)์—์„œ SE(3)๋กœ์˜ ์ง€์ˆ˜ ์‚ฌ์ƒ

\hat{\xi} \in \mathfrak{se}(3)์™€ \theta \in \mathbb{R}์— ๋Œ€ํ•ด:

\exp(\hat{\xi}\theta) = \exp\left(\begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix}\theta\right) \in SE(3)

๋ณ€ํ™˜ g = \exp(\hat{\xi}\theta)๋Š” ์ดˆ๊ธฐ ์ขŒํ‘œ p(0) \in \mathbb{R}^3๋ฅผ ๊ฐ•์ฒด ์šด๋™ ํ›„์˜ ์ขŒํ‘œ p(\theta)๋กœ ๋งคํ•‘ํ•œ๋‹ค: p(\theta) = \exp(\hat{\xi}\theta)p(0)

2.3.3 ์ •๊ธฐ๊ตฌํ•™ (Forward Kinematics)

๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ •๊ธฐ๊ตฌํ•™์€ ์ง€์ˆ˜์˜ ๊ณฑ ๊ณต์‹ (Product of Exponentials)์œผ๋กœ ์ฃผ์–ด์ง„๋‹ค:

g(\Theta) = e^{(\hat{\xi}_1\theta_1)}e^{(\hat{\xi}_2\theta_2)} \cdots e^{(\hat{\xi}_n\theta_n)}g(0)

์—ฌ๊ธฐ์„œ:

  • g(\theta): ๊ณต๊ฐ„ ์ขŒํ‘œ๊ณ„์—์„œ ์—”๋“œ์ดํŽ™ํ„ฐ์˜ ๋™์ฐจ ํ‘œํ˜„
  • \xi_i \in \mathbb{R}^6: ๊ณต๊ฐ„ ์ขŒํ‘œ๊ณ„์—์„œ ํ‘œํ˜„๋œ ํŠธ์œ„์ŠคํŠธ
  • \theta_i \in \mathbb{R}: i๋ฒˆ์งธ ๊ด€์ ˆ์˜ ๊ด€์ ˆ ๊ฐ๋„

3. ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹ (Equivariant Deep Learning)

๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹์€ ์ฃผ๋กœ 2D ์ด๋ฏธ์ง€๋‚˜ 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ๊ฐ™์€ ์‹œ๊ฐ ์ž…๋ ฅ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ์ด ์žฅ์—์„œ๋Š” ๋“ฑ๋ณ€์„ฑ์˜ ๊ฐœ๋…๊ณผ ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์†Œ๊ฐœํ•œ๋‹ค.

3.1 ์ •๊ทœ ๊ทธ๋ฃน CNN (Regular Group CNNs)

3.1.1 ํ‘œ์ค€ CNN: ์ƒํ˜ธ์ƒ๊ด€ ์ปค๋„๊ณผ ๊ฐ€์ค‘์น˜ ๊ณต์œ 

์ƒํ˜ธ์ƒ๊ด€(Cross-correlation) ์—ฐ์‚ฐ:

์ž…๋ ฅ ์ด๋ฏธ์ง€ f(x)์™€ ์ƒํ˜ธ์ƒ๊ด€ ์ปค๋„ k(x)์˜ ์ƒํ˜ธ์ƒ๊ด€:

y(x) = (k \star f)(x) = \int_{\mathbb{R}^n} f(\tilde{x})k(\tilde{x} - x)d\tilde{x}

๋˜๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์ปค๋„ \hat{k}(x)๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด:

y(x) = (\hat{k} * f)(x) = \int_{\mathbb{R}^n} f(\tilde{x})\hat{k}(x - \tilde{x})d\tilde{x}

์—ฌ๊ธฐ์„œ k(x) = \hat{k}(-x)์ด๋‹ค.

์ขŒ์ •์น™ ํ‘œํ˜„ (Left-regular Representation):

๊ตฐ G๊ฐ€ ํ•จ์ˆ˜ f(x)์— ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹:

L_g(f)(x) = g \circ f(x) = f(g^{-1} \circ x)

์ด ์ •์˜์—์„œ: L_{g_1g_2}(f)(x) = f((g_1g_2)^{-1} \circ x) = f(g_2^{-1}g_1^{-1} \circ x)

๊ฐ€์ค‘์น˜ ๊ณต์œ  (Weight-sharing):

ํ‰ํ–‰์ด๋™๊ตฐ (\mathbb{R}^n, +)์˜ ์ขŒ์ •์น™ ํ‘œํ˜„์„ ์ƒํ˜ธ์ƒ๊ด€ ์ปค๋„์— ์ ์šฉ:

T_x(k)(\tilde{x}) := L_x(k)(\tilde{x}) = k(\tilde{x} - x)

์ƒํ˜ธ์ƒ๊ด€์„ ๋‚ด์ ์œผ๋กœ ํ‘œํ˜„:

y(x) = (k \star f)(x) = \langle T_x(k), f \rangle_{L^2(\mathbb{R}^n)}

์ด ํ˜•ํƒœ๋Š” CNN์ด ํ…œํ”Œ๋ฆฟ ๋งค์นญ์„ ์ˆ˜ํ–‰ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ฐ™์€ ์ปค๋„ ๊ฐ€์ค‘์น˜๋ฅผ ์—ฌ๋Ÿฌ ์œ„์น˜์—์„œ ๊ณต์œ ํ•˜์—ฌ ํšจ์œจ์ ์ธ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋‹ค.

ํ‘œ์ค€ CNN์˜ ๋ฌธ์ œ์ : ํšŒ์ „์— ๋Œ€ํ•œ ๊ฐ€์ค‘์น˜ ๊ณต์œ ๊ฐ€ ์—†์–ด์„œ, ๋‹ค์–‘ํ•œ ๋ฐฉํ–ฅ์˜ ๋น„์Šทํ•œ ํ•„ํ„ฐ๋“ค์ด ์ค‘๋ณต ์ƒ์„ฑ๋œ๋‹ค.

3.1.2 SE(2) ์ •๊ทœ ๊ทธ๋ฃน CNN

2D ํšŒ์ „์— ๋Œ€ํ•œ ๊ฐ€์ค‘์น˜ ๊ณต์œ ๋ฅผ ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•ด, G-CNN์€ 2D ํšŒ์ „-ํ‰ํ–‰์ด๋™ ๊ตฐ SE(2)์—์„œ์˜ ์ปจ๋ณผ๋ฃจ์…˜ ๊ฐœ๋…์„ ๋„์ž…ํ•œ๋‹ค.

SE(2) ๋ฆฌํ”„ํŒ… ์ƒํ˜ธ์ƒ๊ด€ (Lifting Correlation):

\mathbb{R}^2์—์„œ SE(2) ๊ณต๊ฐ„์œผ๋กœ์˜ ๋ฆฌํ”„ํŒ…:

f_{SE(2)}(g) = y_{SE(2)}(x, \theta) = (k \star_{SE(2)} f)(x, \theta)

= \langle L_{(x,\theta)}k, f \rangle_{L^2(\mathbb{R}^2)} = \int_{\mathbb{R}^2} k(R_\theta^{-1}(\tilde{x} - x))f(\tilde{x})d\tilde{x}

SE(2) ์ •๊ทœ ๊ทธ๋ฃน ์ƒํ˜ธ์ƒ๊ด€:

๋ฆฌํ”„ํŒ… ํ›„, SE(2)์˜ ๊ณ ์ฐจ์› ํŠน์ง• ๋งต์—์„œ ๊ทธ๋ฃน ์ƒํ˜ธ์ƒ๊ด€ ์ˆ˜ํ–‰:

y(g) = \int_{SE(2)} k(g^{-1} \cdot \tilde{g})f_{SE(2)}(\tilde{g})d\tilde{g}

= \int_{\mathbb{R}^2} \int_{S^1} k(R_\theta^{-1}(\tilde{x} - x), \tilde{\theta} - \theta)f_{SE(2)}(\tilde{x}, \tilde{\theta})d\tilde{x}d\tilde{\theta}

์‹ค์ œ ๊ตฌํ˜„: ์—ฐ์†์ ์ธ SE(2) ๊ตฐ์„ ์œ ํ•œ ๋ถ€๋ถ„๊ตฐ \mathbb{R}^2 \rtimes C_N์œผ๋กœ ๊ทผ์‚ฌํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ C_N์€ ์ฐจ์ˆ˜ N์˜ ์ˆœํ™˜๊ตฐ์ด๋‹ค.

3.1.3 ๋“ฑ๋ณ€ ์‚ฌ์ƒ (Equivariant Maps)

G๊ฐ€ ๋ฆฌ ๊ตฐ์ด๊ณ , M๊ณผ N์ด ๋งค๋„๋Ÿฌ์šด ๋‹ค์–‘์ฒด์ผ ๋•Œ, ์‚ฌ์ƒ \Phi : M \to N์ด G-์ž‘์šฉ์— ๋Œ€ํ•ด ๋“ฑ๋ณ€์ด๋ผ ํ•จ์€:

\Phi(g \circ p) = g \circ \Phi(p) \quad \text{(์ขŒ์ž‘์šฉ์˜ ๊ฒฝ์šฐ)}

\Phi(p \circ g) = \Phi(p) \circ g \quad \text{(์šฐ์ž‘์šฉ์˜ ๊ฒฝ์šฐ)}

๋“ฑ๋ณ€์„ฑ์˜ ์˜๋ฏธ:

  • ์ž…๋ ฅ ๋ณ€ํ™˜์— ์˜ํ•ด ์ •๋ณด๊ฐ€ ์†์‹ค๋˜์ง€ ์•Š์Œ
  • ์ถœ๋ ฅ์ด ์ž…๋ ฅ ๋ณ€ํ™˜์— ๋Œ€์‘ํ•˜๋Š” ์œ„์น˜๋กœ ์ด๋™
  • ๋ณ€ํ™˜์— ๋Œ€ํ•œ ๊ฐ€์ค‘์น˜ ๊ณต์œ  ๊ฐ€๋Šฅ โ†’ ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ ๊ฐ์†Œ

3.2 ์กฐํ–ฅ ๊ฐ€๋Šฅ ๊ทธ๋ฃน CNN (Steerable Group CNNs)

์กฐํ–ฅ ๊ฐ€๋Šฅ(Steerable) ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋” ํšจ์œจ์ ์ธ ๋“ฑ๋ณ€ CNN์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ์กฐํ–ฅ ๊ฐ€๋Šฅ ๋ฐฉ๋ฒ•์€ SO(n)์˜ ์ด์‚ฐํ™”๋ฅผ ํ”ผํ•˜๊ณ , ๊ธฐ์•ฝ ํ‘œํ˜„์„ ํ™œ์šฉํ•˜์—ฌ ๋ฆฌ ๊ตฐ ์œ„์˜ ํ‘ธ๋ฆฌ์— ์ด๋ก ์„ ์‚ฌ์šฉํ•œ๋‹ค.

3.2.1 ๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜ (Spherical Harmonics, SH)

๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜๋Š” ์กฐํ–ฅ ๊ฐ€๋Šฅ ํ•จ์ˆ˜์˜ ์ด๋ก ์  ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, SO(3) ๋ณ€ํ™˜์˜ ๊ธฐ์ € ํ•จ์ˆ˜ ์—ญํ• ์„ ํ•œ๋‹ค.

Y^l_m(\theta, \phi) = Ne^{im\phi}P^l_m(\cos\theta)

์—ฌ๊ธฐ์„œ:

  • \theta, \phi: ๋ฐฉ์œ„๊ฐ๊ณผ ๊ฒฝ๋„๊ฐ
  • P^l_m: ์—ฐ๊ด€ ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹
  • l \in \{0, 1, 2, \ldots\}: ์ฐจ์ˆ˜ (degree)
  • m \in \{-l, \ldots, l\}: ์ˆœ์„œ (order)

๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜๊ฐ€ ํŽผ์น˜๋Š” ๋ถ€๋ถ„ ํ‘œํ˜„ ๊ณต๊ฐ„:

V_0 = \text{Span}\{Y^0_0(n)\} V_1 = \text{Span}\{Y^1_{-1}(n), Y^1_0(n), Y^1_1(n)\} V_k = \text{Span}\{Y^k_{-k}(n), Y^k_{-k+1}(n), \ldots, Y^k_k(n)\}

V_l์„ type-l (๋˜๋Š” spin-l) ๋ฒกํ„ฐ์žฅ์ด๋ผ ๋ถ€๋ฅธ๋‹ค.

Type ์ฐจ์› ๋ฌผ๋ฆฌ์  ์˜๋ฏธ
Type-0 1 ์Šค์นผ๋ผ (ํšŒ์ „์— ๋ถˆ๋ณ€)
Type-1 3 3์ฐจ์› ๋ฒกํ„ฐ
Type-2 5 ๊ณ ์ฐจ ํ…์„œ

๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜์˜ ํ•ต์‹ฌ ์„ฑ์งˆ - Wigner-D ํ–‰๋ ฌ์— ์˜ํ•œ ๋“ฑ๋ณ€ ๋ณ€ํ™˜:

(2l+1)์ฐจ์› ๋ฒกํ„ฐ์žฅ: Y^l = [Y^l_{-l}, Y^l_{-l+1}, \ldots, Y^l_{l-1}, Y^l_l]^T

Y^l\left(R\frac{x}{\|x\|}\right) = D^l(R)Y^l\left(\frac{x}{\|x\|}\right)

์—ฌ๊ธฐ์„œ D^l(R)์€ R \in SO(3)์˜ ์ฐจ์ˆ˜ l Wigner-D ํ–‰๋ ฌ ํ‘œํ˜„์ด๋‹ค.

3.2.2 Wigner-D ํ–‰๋ ฌ

SO(3)์˜ ์ง๊ต ๊ธฐ์ €๋กœ์„œ์˜ Wigner-D ํ–‰๋ ฌ:

SO(3) ์œ„์˜ ์ž„์˜์˜ ํ•จ์ˆ˜ h๋Š” Wigner-D ํ–‰๋ ฌ์˜ ํ‘ธ๋ฆฌ์— ๊ธ‰์ˆ˜๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ:

h(R) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{h}^{(l)}_{mn} D^l_{mn}(R) = \sum_{l=0}^{\infty} \text{tr}[\hat{h}^{(l)}(D^l(R))^T]

SO(3) ๊ตฐ ํ‘œํ˜„์œผ๋กœ์„œ์˜ Wigner-D ํ–‰๋ ฌ:

SO(3)์˜ ์ž„์˜์˜ ํ‘œํ˜„ D(R)์€ ๊ธฐ์•ฝ ํ‘œํ˜„ D^l(R)์˜ ์ง์ ‘ํ•ฉ์œผ๋กœ ์•ฝ๋ถ„ ๊ฐ€๋Šฅ:

D(R) = U\left[\bigoplus_{l=1}^{N} D^l(R)\right]U^{-1}, \quad \forall R \in SO(3)

3.2.3 ์กฐํ–ฅ ๊ฐ€๋Šฅ ํ•จ์ˆ˜์™€ ๋ฒกํ„ฐ

์กฐํ–ฅ ๊ฐ€๋Šฅ ํ•จ์ˆ˜: ๋ณ€ํ™˜๊ตฐ G์— ๋Œ€ํ•ด, ์ž„์˜์˜ ๋ณ€ํ™˜ g \in G๊ฐ€ ์œ ํ•œ ๊ธฐ์ € ํ•จ์ˆ˜ ์ง‘ํ•ฉ \{\phi_i\}์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ:

L_g k = \sum_{i=1}^{n} \alpha_i(g)\phi_i = \alpha^T(g)\Phi

์กฐํ–ฅ ๊ฐ€๋Šฅ ํŠน์ง• ๋ฒกํ„ฐ: Wigner-D ํ–‰๋ ฌ์— ์˜ํ•ด ๋ณ€ํ™˜๋˜๋Š” ๋ฒกํ„ฐ

Type-l ์กฐํ–ฅ ๊ฐ€๋Šฅ ๋ฒกํ„ฐ ๊ณต๊ฐ„ V_l์€ (2l+1)์ฐจ์›์ด๋ฉฐ, ์ฐจ์ˆ˜ l์˜ Wigner-D ํ–‰๋ ฌ์— ์˜ํ•ด ์ž‘์šฉ์„ ๋ฐ›๋Š”๋‹ค.

์˜ˆ: u๊ฐ€ V_3์˜ type-3 ๋ฒกํ„ฐ์ด๋ฉด, g \in SO(3)์— ์˜ํ•ด u \to D^3(g)u๋กœ ๋ณ€ํ™˜

3.2.4 ์กฐํ–ฅ ๊ฐ€๋Šฅ ๊ทธ๋ฃน ์ปจ๋ณผ๋ฃจ์…˜

๊ตฌ๋ฉด ์กฐํ™” ๊ธฐ์ €๋กœ ์ „๊ฐœ๋œ 3D ์ปจ๋ณผ๋ฃจ์…˜ ์ปค๋„ (์ฐจ์ˆ˜ L๊นŒ์ง€):

k(x) = k_c(\|x\|)(x) := \sum_{l=0}^{L} \sum_{m=-l}^{l} c^l_m(\|x\|)Y^l_m\left(\frac{x}{\|x\|}\right)

์ด ์ปค๋„์€ ๊ณ„์ˆ˜ c์˜ SO(3) ํ‘œํ˜„ D(R)์— ์˜ํ•ด ์กฐํ–ฅ ๊ฐ€๋Šฅ:

L_g k(x) = k(g^{-1}x) = k_c(R^{-1}x) = k_{D(R)c(\|x\|)}(x)

SE(3) ๋ฆฌํ”„ํŒ… ์ปจ๋ณผ๋ฃจ์…˜:

y(g) = y(x, R) = \langle L_g k, f \rangle_{L^2(\mathbb{R}^3)}

= D(R)^T \int_{\mathbb{R}^3} c(\|\tilde{x} - x\|)^T \Phi\left(\frac{\tilde{x} - x}{\|\tilde{x} - x\|}\right)f(\tilde{x})d\tilde{x}

= D(R)^T \hat{f}^\Phi_c(x)

์—ฌ๊ธฐ์„œ \hat{f}^\Phi_c(x)๋Š” ์‘๋‹ต์˜ ์กฐํ–ฅ ๊ฐ€๋Šฅ ๋ฒกํ„ฐ์ด๋‹ค.

ํ•ต์‹ฌ: D(R)^T๊ฐ€ ์ปจ๋ณผ๋ฃจ์…˜ ์ ๋ถ„ ๋ฐ–์œผ๋กœ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ์–ด์„œ, R์— ๋Œ€ํ•œ ์ด์‚ฐํ™” ์—†์ด y(g)๋ฅผ g์˜ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค.

3.2.5 ํด๋ ™์‹œ-๊ณ ๋ฅด๋‹จ ํ…์„œ๊ณฑ (Clebsch-Gordan Tensor Product)

์กฐํ–ฅ ๊ฐ€๋Šฅ ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ ๋ฒกํ„ฐ ๊ณต๊ฐ„ ์‚ฌ์ด๋ฅผ ๋งคํ•‘ํ•˜๋Š” ์กฐํ–ฅ ๊ฐ€๋Šฅ ์„ ํ˜• ์ธต์— ์‚ฌ์šฉ๋œ๋‹ค.

๋‘ ์กฐํ–ฅ ๊ฐ€๋Šฅ ๋ฒกํ„ฐ u \in V_{l_1}์™€ v \in V_{l_2}์— ๋Œ€ํ•ด, CG ํ…์„œ๊ณฑ์˜ ์ถœ๋ ฅ๋„ SO(3) ํ‘œํ˜„ D(R)๋กœ ์กฐํ–ฅ ๊ฐ€๋Šฅ:

D(R)(u \otimes v) = (D^{l_1}(R)u) \otimes (D^{l_2}(R)v)

CG ํ…์„œ๊ณฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ…์„œ๊ณฑ์˜ type-l ๋ถ€๋ถ„๋ฒกํ„ฐ์˜ m๋ฒˆ์งธ ์„ฑ๋ถ„ ์ •์˜:

(u \otimes_{cg} v)^l_m = \sum_{m_1=-l_1}^{l_1} \sum_{m_2=-l_2}^{l_2} C^{(l,m)}_{(l_1,m_1)(l_2,m_2)} u_{m_1} v_{m_2}

์—ฌ๊ธฐ์„œ C^{(l,m)}_{(l_1,m_1)(l_2,m_2)}๋Š” ํด๋ ™์‹œ-๊ณ ๋ฅด๋‹จ ๊ณ„์ˆ˜์ด๋‹ค.

CG ํ…์„œ๊ณฑ์€ |l_1 - l_2| \leq l \leq l_1 + l_2๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ C^{(l,m)}_{(l_1,m_1)(l_2,m_2)} = 0์ด๋ฏ€๋กœ ์ผ๋ฐ˜์ ์œผ๋กœ ํฌ์†Œํ•˜๋‹ค.


3.3 SE(3)-๋“ฑ๋ณ€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง

3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋Š” RGBD ์ž…๋ ฅ์—์„œ ์ƒ์„ฑ๋˜๋ฉฐ, SE(3) ๋“ฑ๋ณ€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์œผ๋กœ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

SE(3)-๋“ฑ๋ณ€ ์‚ฌ์ƒ์˜ ์ •์˜:

D_V(g)f(O_X | O_Y) = f(g \circ O_X | g \circ O_Y)

D_V(g) = I์ธ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ, ์‚ฌ์ƒ f(O_X | O_Y)๋Š” G-๋ถˆ๋ณ€์ด๋ผ ํ•œ๋‹ค.

SE(3)-๋“ฑ๋ณ€ type-l ๋ฒกํ„ฐ์žฅ:

D^l(R)f(x | O_X) = f(Rx + p | g \circ O_X), \quad \forall g = (p, R) \in SE(3)

3.3.1 ํ…์„œ์žฅ ์‹ ๊ฒฝ๋ง (Tensor Field Networks, TFN)

TFN์€ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ž…๋ ฅ์—์„œ ํ‘œํ˜„๋ก ์  ๋ฒกํ„ฐ์žฅ์„ ์ƒ์„ฑํ•˜๋Š” SE(3)-๋“ฑ๋ณ€ ๋ชจ๋ธ์ด๋‹ค.

ํŠน์ง• ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ž…๋ ฅ: O_X = \{(x_1, f_1), \ldots, (x_M, f_M)\}

g = (p, R) \in SE(3)์˜ O_X์— ๋Œ€ํ•œ ์ž‘์šฉ: g \circ O_X = \{(gx_1, D(R)f_1), \ldots, (gx_M, D(R)f_M)\}

์ž…๋ ฅ ํŠน์ง•์žฅ: f^{(in)}(x | X) = \sum_{j=1}^{M} f_j \delta^{(3)}(x - x_j)

์ถœ๋ ฅ ํŠน์ง•์žฅ (์ƒํ˜ธ์ƒ๊ด€์œผ๋กœ ์ƒ์„ฑ): f^{(out)}(x | O_X) = \int_{\mathbb{R}^3} k(x - y)f^{(in)}(y | O_X)dy^3 = \sum_j k(x - x_j)f_j

์ปจ๋ณผ๋ฃจ์…˜ ์ปค๋„: [k^{(n',n)}(x)]_{m'm} = \sum_{J=|l_{n'} - l_n|}^{l_{n'} + l_n} \phi^{(n',n)}_J(\|x\|) \sum_{k=-J}^{J} C^{(l_{n'}, m')}_{(l_n, m)(J, k)} Y^J_k(x/\|x\|)

ํด๋ ™์‹œ-๊ณ ๋ฅด๋‹จ ๊ณ„์ˆ˜์˜ ์ธํ„ฐํŠธ์™€์ด๋‹ ์„ฑ์งˆ๋กœ ์ธํ•ด: k^{(n',n)}(Rx) = D^{l_{n'}}(R) k^{(n',n)}(x) D^{l_n}(R)^{-1}

์ด ์„ฑ์งˆ๋กœ ์ถœ๋ ฅ ํŠน์ง•์žฅ f^{(out)}(x | O_X)๊ฐ€ SE(3)-๋“ฑ๋ณ€์ž„์„ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค.

SE(3)-Transformers:

TFN์˜ ๋ณ€ํ˜•์œผ๋กœ ์ž๊ธฐ ์ฃผ์˜(Self-attention) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ถ”๊ฐ€:

f_{(out),i} = \sum_{j \neq i} \alpha_{ij} k(x - x_j)f_j + \bigoplus_{n'=1}^{N'} \sum_{n=1}^{N} k^{(n',n)}_{(S)} f^{(n)}_j

์—ฌ๊ธฐ์„œ \alpha_{ij}๋Š” type-0 (์Šค์นผ๋ผ) ์ž๊ธฐ ์ฃผ์˜, k^{(n',n)}_{(S)}๋Š” ์ž๊ธฐ ์ƒํ˜ธ์ž‘์šฉ ํ•ญ์ด๋‹ค.

3.3.2 ํ…์„œ๊ณฑ์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ฒ˜๋ฆฌ

๋“ฑ๋ณ€ ๊ตฌ๋ฉด ์ฑ„๋„ ๋„คํŠธ์›Œํฌ (eSCN):

TFN์˜ ์›๋ž˜ ํ…์„œ๊ณฑ ์—ฐ์‚ฐ๊ณผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋™๋“ฑํ•˜๋ฉด์„œ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ ํ•œ ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค.

  • ํ…์„œ๊ณฑ ๋ณต์žก๋„: O(L^6) \to O(L^3) (์—ฌ๊ธฐ์„œ L์€ ์ตœ๊ณ  ํŠน์ง• ํƒ€์ž…)
  • ํ›จ์”ฌ ๊ณ ์ฃผํŒŒ ํŠน์ง• ์‚ฌ์šฉ ๊ฐ€๋Šฅ โ†’ ๋กœ๋ด‡ ์กฐ์ž‘ ์ž‘์—…์˜ ์ •ํ™•๋„ ํ–ฅ์ƒ

Gaunt ํ…์„œ๊ณฑ:

ํด๋ ™์‹œ-๊ณ ๋ฅด๋‹จ ๊ณ„์ˆ˜๋ฅผ ์„ธ ๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜์˜ ๊ณฑ์˜ ์ ๋ถ„์ธ Gaunt ๊ณ„์ˆ˜์™€ ์—ฐ๊ฒฐํ•˜์—ฌ ๋ณต์žก๋„๋ฅผ O(L^6)์—์„œ O(L^3)์œผ๋กœ ๊ฐ์†Œ์‹œํ‚จ๋‹ค.


3.4 PointNet ๊ธฐ๋ฐ˜ ๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง

PointNet: ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋ฅผ ์ง์ ‘ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„๋œ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜๋กœ, ์ž…๋ ฅ ์ ๋“ค์˜ ์ˆœ์„œ์— ๊ด€๊ณ„์—†์ด ์ผ๊ด€๋œ ์ถœ๋ ฅ์„ ๋ณด์žฅํ•˜๋Š” ์ˆœ์—ด ๋ถˆ๋ณ€์„ฑ์„ ๋ณด์žฅํ•œ๋‹ค.

Vector Neurons (VN): ์Šค์นผ๋ผ ๋‰ด๋Ÿฐ์„ 3D ๋ฒกํ„ฐ ๋‰ด๋Ÿฐ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ SO(3)-๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง ๊ตฌ์„ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค.

VN์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ SO(3)-๋“ฑ๋ณ€ ๋นŒ๋”ฉ ๋ธ”๋ก์„ ์ œ๊ณตํ•œ๋‹ค:

  • ์„ ํ˜• ์ธต
  • ๋น„์„ ํ˜•์„ฑ
  • ํ’€๋ง
  • ์ •๊ทœํ™”

VN ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ VN-PointNet์€ SO(3)-๋“ฑ๋ณ€ PointNet์ด๋‹ค.


4. ๋กœ๋ณดํ‹ฑ์Šค์—์„œ์˜ ๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹

๋“ฑ๋ณ€ ์‹ ๊ฒฝ๋ง์€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ๋น„์šฉ์ด ๋งŽ์ด ๋“ค๊ณ  ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์ด ํ•„์š”ํ•œ ๋กœ๋ด‡ ํ•™์Šต์—์„œ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ๊ณผ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.

4.1 ๋ชจ๋ฐฉ ํ•™์Šต (Imitation Learning)

๋ชจ๋ฐฉ ํ•™์Šต์€ ์›ํ•˜๋Š” ํ–‰๋™์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์จ ๋กœ๋ด‡์„ ๊ฐ€๋ฅด์น˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์ž์„ธํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด๋‚˜ ์ˆ˜๊ณ ๋กœ์šด ๋ณด์ƒ ํ•จ์ˆ˜ ์—”์ง€๋‹ˆ์–ด๋ง์„ ์™„ํ™”ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋น„์šฉ์ด ๋ฐฉ๋ฒ•์˜ ํ™•์žฅ์„ฑ๊ณผ ํšจ์œจ์„ฑ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค.

4.1.1 ๋“ฑ๋ณ€ ๊ธฐ์ˆ ์ž์žฅ (Equivariant Descriptor Fields, EDF)

Neural Descriptor Fields (NDF)๋Š” Vector Neurons๋ฅผ ์‚ฌ์šฉํ•œ ์นดํ…Œ๊ณ ๋ฆฌ ์ˆ˜์ค€ ๊ธฐ์ˆ ์ž๋กœ ๊ฐ์ฒด ํ‘œํ˜„์„ ๊ตฌํ˜„ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ํ™˜๊ฒฝ ๋ชจ๋‘์—์„œ 5-10๊ฐœ์˜ ์‹œ์—ฐ์œผ๋กœ ์กฐ์ž‘ ์ž‘์—… ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค.

EDF๋Š” Equiformer์™€ SE(3)-Transformer์˜ ๊ตญ์†Œ์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์ง€์—ญ ๋“ฑ๋ณ€์„ฑ์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์ „ ํ›ˆ๋ จ๊ณผ ๊ฐ์ฒด ๋ถ„ํ•  ์—†์ด ์ข…๋‹จ๊ฐ„ ํ›ˆ๋ จ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.

SE(3) ์œ„์˜ ์ด์ค‘๋“ฑ๋ณ€ ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ:

P(g | O^{scene}, O^{grasp}) = \frac{\exp(-E(g | O^{scene}, O^{grasp}))}{Z}

Z = \int_{SE(3)} dg \exp(-E(g | O^{scene}, O^{grasp}))

์ด์ค‘๋“ฑ๋ณ€(Bi-equivariance) ์กฐ๊ฑด:

P(g | O^{scene}, O^{grasp}) = P(\Delta g_w g | \Delta g_w \circ O^{scene}, O^{grasp}) = P(g\Delta g_e^{-1} | O^{scene}, \Delta g_e \circ O^{grasp})

์—ฌ๊ธฐ์„œ \Delta g_w๋Š” ์›”๋“œ ํ”„๋ ˆ์ž„ ๋ณ€ํ™˜, \Delta g_e๋Š” ์—”๋“œ์ดํŽ™ํ„ฐ ํ”„๋ ˆ์ž„ ๋ณ€ํ™˜์ด๋‹ค.

์—๋„ˆ์ง€ ํ•จ์ˆ˜:

E(g | O^{scene}, O^{grasp}) = \int_{\mathbb{R}^3} d^3x \, \rho(x | O^{grasp}) \|\phi(gx | O^{scene}) - D(R)\psi(x | O^{grasp})\|^2

์—ฌ๊ธฐ์„œ:

  • \rho(x | O^{grasp}): ์ฟผ๋ฆฌ ๋ฐ€๋„ (SE(3)-๋“ฑ๋ณ€ ๋น„์Œ์ˆ˜ ์Šค์นผ๋ผ์žฅ)
  • \phi(gx | O^{scene}): ํ‚ค EDF
  • \psi(x | O^{grasp}): ์ฟผ๋ฆฌ EDF

4.1.2 Diffusion-EDF

Diffusion-EDF๋Š” ์ด์ค‘๋“ฑ๋ณ€์„ฑ๊ณผ ๋กœ๋ด‡ ์กฐ์ž‘์˜ ๊ตญ์†Œ์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ EDF์˜ ํ›ˆ๋ จ ์‹œ๊ฐ„์„ ๊ฐœ์„ ํ•˜๋ฉด์„œ ์ข…๋‹จ๊ฐ„ ํ›ˆ๋ จ ๋ฐฉ์‹๊ณผ ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ์„ ์œ ์ง€ํ•œ๋‹ค.

์ด์ค‘๋“ฑ๋ณ€ ์Šค์ฝ”์–ด ํ•จ์ˆ˜:

s(\Delta g g | \Delta g \circ O^{scene}, O^{grasp}) = s(g | O^{scene}, O^{grasp})

s(g\Delta g^{-1} | O^{scene}, \Delta g \circ O^{grasp}) = [\text{Ad}_{\Delta g}]^{-T} s(g | O^{scene}, O^{grasp})

\text{Ad}_g = \begin{bmatrix} R & \hat{p}R \\ 0 & R \end{bmatrix}

์Šค์ฝ”์–ด ๋ชจ๋ธ:

s_t(g | O^{scene}, O^{grasp}) = [s_{\nu;t} \oplus s_{\omega;t}](g | O^{scene}, O^{grasp})

์—ฌ๊ธฐ์„œ s_{\nu;t}๋Š” ํ‰ํ–‰์ด๋™ ์Šค์ฝ”์–ด, s_{\omega;t}๋Š” ํšŒ์ „ ์Šค์ฝ”์–ด์ด๋‹ค.

4.1.3 RiEMann

RiEMann์€ ๊ฑฐ์˜ ์‹ค์‹œ๊ฐ„ SE(3)-๋“ฑ๋ณ€ ๋กœ๋ด‡ ์กฐ์ž‘ ํ”„๋ ˆ์ž„์›Œํฌ์ด๋‹ค.

  • SE(3)-Transformer๋กœ ์–ดํฌ๋˜์Šค ๋งต \phi(x | O_X) ํ•™์Šต
  • ์–ดํฌ๋˜์Šค ๋งต์—์„œ ๊ด€์‹ฌ ์˜์—ญ B_{ROI} ์ถ”์ถœ
  • ๊ณ„์‚ฐ ๋ณต์žก๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๊ฐ์†Œ

์ถœ๋ ฅ ์„ค๊ณ„:

  • ํ‰ํ–‰์ด๋™ ํ–‰๋™ ๋„คํŠธ์›Œํฌ: type-0 ๋ฒกํ„ฐ์žฅ ํ•˜๋‚˜
  • ๋ฐฉํ–ฅ ๋„คํŠธ์›Œํฌ: type-1 ๋ฒกํ„ฐ์žฅ ์„ธ ๊ฐœ โ†’ IMGS ์ง๊ตํ™”๋กœ ํšŒ์ „ ํ–‰๋ ฌ ์˜ˆ์ธก

4.1.4 Fourier Transporter

3D ์ปจ๋ณผ๋ฃจ์…˜๊ณผ ํšŒ์ „์˜ ํ‘ธ๋ฆฌ์— ํ‘œํ˜„์„ ์‚ฌ์šฉํ•œ SE(3) ์ด์ค‘๋“ฑ๋ณ€ ๋ชจ๋ธ์ด๋‹ค.

ํ”ฝ ๋„คํŠธ์›Œํฌ:

f_{pick} : o_t \mapsto p(a_{pick} | o_t)

ํ”ฝ ํฌ์ฆˆ ๋ถ„ํฌ๋Š” ๊ด€์ฐฐ์— ๋Œ€ํ•œ ๋ณ€ํ™˜์„ ๋”ฐ๋ผ์•ผ ํ•œ๋‹ค:

f_{pick}(g \circ o_t) = \text{Ind}_\rho(g)f_{pick}(o_t), \quad \forall g \in SE(3)

ํ”Œ๋ ˆ์ด์Šค ๋„คํŠธ์›Œํฌ:

f_{place} : (c, o_t) \to p(a_{place} | o_t, a_{pick})

์ด์ค‘๋“ฑ๋ณ€ ์ œ์•ฝ:

f_{place}(g_1 \circ c, g_2 \circ o_t) = \text{Ind}_\rho(g_2)\rho_R(g_1^{-1})f_{place}(c, o_t)

๋™์  ์ปค๋„: ๋ฐ€์ง‘ ํŠน์ง• ๋งต์„ ์œ ํ•œ ํšŒ์ „์œผ๋กœ ๋ฆฌํ”„ํŒ…ํ•˜๊ณ  ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ํ•˜์—ฌ ์ฑ„๋„ ๊ณต๊ฐ„์œผ๋กœ ๋ณ€ํ™˜

\mathcal{L}^\uparrow[f](x) = \{f(R_1^{-1}x), f(R_2^{-1}x), \ldots, f(R_m^{-1}x)\}

\kappa(c) = \mathcal{F}^+[\mathcal{L}^\uparrow(\psi(c))]


4.2 ๋“ฑ๋ณ€ ๊ฐ•ํ™” ํ•™์Šต (Equivariant Reinforcement Learning)

๋งŽ์€ ๋“ฑ๋ณ€ ๊ฐ•ํ™” ํ•™์Šต ๋ฐฉ๋ฒ•์€ ๊ตฐ๋ถˆ๋ณ€ ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ • (Group-invariant MDP)์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค.

\mathcal{M}_G = (S, A, P, R, G)

4.2.1 ๊ตฐ๋ถˆ๋ณ€ MDP์˜ ์กฐ๊ฑด

  • ๋ณด์ƒ ํ•จ์ˆ˜: R(s, a) = R(g \circ s, g \circ a)
  • ์ „์ด ํ™•๋ฅ : P(s' | s, a) = P(g \circ s' | g \circ s, g \circ a)

4.2.2 ๊ฒฐ๊ณผ์  ์„ฑ์งˆ

๊ตฐ๋ถˆ๋ณ€ ์„ฑ์งˆ๋กœ ์ธํ•ด:

  • ์ตœ์  Q ํ•จ์ˆ˜: Q^*(s, a) = Q^*(g \circ s, g \circ a) (๊ตฐ๋ถˆ๋ณ€)
  • ์ตœ์  ์ •์ฑ…: \pi^*(g \circ s) = g \circ \pi^*(s) (๋“ฑ๋ณ€)

4.2.3 ์ฆ๋ช… ๊ฐœ์š”

๋ฒจ๋งŒ ์ตœ์  ๋ฐฉ์ •์‹: Q^*(s, a) = R(s, a) + \gamma \sup_{a'} \int_{s'} ds' P(s' | s, a)Q^*(s', a')

๋ณ€ํ™˜๋œ ์ƒํƒœ-ํ–‰๋™ ์Œ์— ๋Œ€ํ•ด: Q^*(g \circ s, g \circ a) = R(s, a) + \gamma \sup_{a'} \int_{s'} ds' P(s' | s, a)Q^*(g \circ s', g \circ a')

\bar{Q}(s, a) = Q(g \circ s, g \circ a)๋ฅผ ์ •์˜ํ•˜๋ฉด: \bar{Q}^*(s, a) = R(s, a) + \gamma \sup_{a'} \int_{s'} ds' P(s' | s, a)\bar{Q}^*(s', a')

๋ฒจ๋งŒ ์ตœ์  ๋ฐฉ์ •์‹์˜ ์œ ์ผ์„ฑ์— ์˜ํ•ด: Q^*(s, a) = Q^*(g \circ s, g \circ a)

์ •์ฑ…์˜ ๋“ฑ๋ณ€์„ฑ: \pi^*(g \circ s) = \arg\max_a Q^*(g \circ s, a) = g \circ \arg\max_{\bar{a}} Q^*(s, \bar{a}) = g \circ \pi^*(s)

4.2.4 ์‘์šฉ

  • SO(2)-๋“ฑ๋ณ€ Q ํ•™์Šต: DQN๊ณผ SAC์— ๋“ฑ๋ณ€ ๋„คํŠธ์›Œํฌ ์ ์šฉ
  • ์‹œ๊ฐ-ํž˜ ๋ฌธ์ œ: ํž˜ ์ž…๋ ฅ๊ณผ ์‹œ๊ฐ ์ž…๋ ฅ์„ ํ™œ์šฉํ•œ ๋“ฑ๋ณ€ ์ •์ฑ… ํ•™์Šต
  • POMDP๋กœ์˜ ํ™•์žฅ: ๋ถ€๋ถ„ ๊ด€์ธก ๊ฐ€๋Šฅ MDP์—์„œ์˜ ๋“ฑ๋ณ€ ๊ฐ•ํ™” ํ•™์Šต
  • ์˜คํ”„๋ผ์ธ ๊ฐ•ํ™” ํ•™์Šต: Conservative Q-Learning๊ณผ Implicit Q-Learning์— ๋“ฑ๋ณ€ ๋„คํŠธ์›Œํฌ ์ ์šฉ

5. ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด (Geometric Impedance Control)

์ด ์„น์…˜์—์„œ๋Š” ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด(GIC)๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ์ด๊ฒƒ์ด SE(3) ๊ตฐ ๋“ฑ๋ณ€ ์ œ์–ด ๋ฒ•์น™์ž„์„ ๋ณด์ธ๋‹ค.

5.1 ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋™์—ญํ•™

5.1.1 ๊ด€์ ˆ ๊ณต๊ฐ„์—์„œ์˜ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋™์—ญํ•™

M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = \tau + \tau_e

์—ฌ๊ธฐ์„œ:

  • q \in \mathbb{R}^n: ๊ด€์ ˆ ์œ„์น˜ ์ขŒํ‘œ
  • \dot{q} \in \mathbb{R}^n: ๊ด€์ ˆ ์†๋„
  • \ddot{q} \in \mathbb{R}^n: ๊ด€์ ˆ ๊ฐ€์†๋„
  • M(q) \in \mathbb{R}^{n \times n}: ๊ด€์„ฑ ํ–‰๋ ฌ
  • C(q, \dot{q}) \in \mathbb{R}^{n \times n}: ์ฝ”๋ฆฌ์˜ฌ๋ฆฌ ํ–‰๋ ฌ
  • G(q) \in \mathbb{R}^n: ์ค‘๋ ฅ ํž˜ ๋ฒกํ„ฐ
  • \tau \in \mathbb{R}^n: ์ œ์–ด ์ž…๋ ฅ ๊ด€์ ˆ ํ† ํฌ
  • \tau_e \in \mathbb{R}^n: ์™ธ๋ถ€ ๊ต๋ž€

5.1.2 SE(3) ์œ„์˜ ์ž‘์—… ๊ณต๊ฐ„์—์„œ์˜ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋™์—ญํ•™

์ž‘์—… ๊ณต๊ฐ„ ๊ณต์‹์„ ์‚ฌ์šฉํ•œ ๋ฌผ์ฒด ํ”„๋ ˆ์ž„ ์†๋„ V^b ๊ธฐ๋ฐ˜ ๋™์—ญํ•™:

\tilde{M}(q)\dot{V}^b + \tilde{C}(q, \dot{q})V^b + \tilde{G}(q) = \tilde{T} + \tilde{T}_e

์—ฌ๊ธฐ์„œ: \tilde{M}(q) = J_b(q)^{-T}M(q)J_b(q)^{-1} \tilde{C}(q, \dot{q}) = J_b(q)^{-T}(C(q, \dot{q}) - M(q)J_b(q)^{-1}\dot{J})J_b(q)^{-1} \tilde{G}(q) = J_b(q)^{-T}G(q), \quad \tilde{T} = J_b(q)^{-T}T, \quad \tilde{T}_e = J_b(q)^{-T}T_e

J_b๋Š” ๋ฌผ์ฒด ํ”„๋ ˆ์ž„ ์•ผ์ฝ”๋น„์•ˆ ํ–‰๋ ฌ: V^b = J_b\dot{q}


5.2 ์˜ค์ฐจ ํ•จ์ˆ˜: SE(3) ์œ„์˜ ๊ฑฐ๋ฆฌ ์œ ์‚ฌ ๋ฉ”ํŠธ๋ฆญ

5.2.1 ๋ฐฐ์น˜ ์˜ค์ฐจ (Configuration Error)

์›ํ•˜๋Š” ๋ฐฐ์น˜ g_d = (p_d, R_d)์™€ ํ˜„์žฌ ๋ฐฐ์น˜ g = (p, R) ์‚ฌ์ด์˜ ๋ณ€ํ™˜ ํ–‰๋ ฌ:

g_{de} = g_d^{-1}g

5.2.2 ํ–‰๋ ฌ ๊ตฐ ๊ด€์ ์—์„œ์˜ ์˜ค์ฐจ ํ•จ์ˆ˜

ํ”„๋กœ๋ฒ ๋‹ˆ์šฐ์Šค ๋…ธ๋ฆ„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ค์ฐจ ํ•จ์ˆ˜:

\Psi_1(g, g_d) = \frac{1}{2}\|I - g_d^T g\|_F^2

= \text{tr}(I - R_d^T R) + \frac{1}{2}(p - p_d)^T(p - p_d)

SO(3)์—์„œ์˜ ์˜ค์ฐจ ํ•จ์ˆ˜: \Psi(R, R_d) = \text{tr}(I - R_d^T R) = \frac{1}{2}\|I - R_d^T R\|_F^2

5.2.3 ๋ฆฌ ๋Œ€์ˆ˜ ๊ด€์ ์—์„œ์˜ ์˜ค์ฐจ ํ•จ์ˆ˜

๋ฐฐ์น˜ ์˜ค์ฐจ์˜ ๋ฒกํ„ฐ ํ‘œํ˜„:

\xi_{de} = \log(g_{de})^\vee = \begin{bmatrix} \hat{\psi}_{de} & b_{de} \\ 0 & 0 \end{bmatrix}^\vee = \begin{bmatrix} b_{de} \\ \psi_{de} \end{bmatrix}

์—ฌ๊ธฐ์„œ: \hat{\psi}_{de} = \log(R_d^T R), \quad b_{de} = A^{-1}(\psi_{de})R_d^T(p - p_d)

A^{-1}(\psi) = I - \frac{1}{2}\hat{\psi} + \frac{2\sin\|\psi\| - \|\psi\|(1 + \cos\|\psi\|)}{2\|\psi\|^2 \sin\|\psi\|}\hat{\psi}^2

\mathfrak{se}(3) ์œ„์˜ ๋‚ด์  (์ขŒ๋ถˆ๋ณ€ ๋ฆฌ๋งŒ ๋ฉ”ํŠธ๋ฆญ):

\langle\hat{\xi}_1, \hat{\xi}_2\rangle_{(P,I)} = \xi_1^T P \xi_2

๋ฆฌ ๋Œ€์ˆ˜ ๊ด€์ ์˜ ์˜ค์ฐจ ํ•จ์ˆ˜:

\Psi_2(g, g_d) = \langle g_{de}\hat{\xi}_{de}, g_{de}\hat{\xi}_{de}\rangle_{(0.5I, g_{de})} = \frac{1}{2}\|\psi_{de}\|^2 + \frac{1}{2}\|b_{de}\|^2


5.3 SE(3) ์œ„์˜ ์˜ค์ฐจ ๋ฒกํ„ฐ

5.3.1 ์œ„์น˜ ์˜ค์ฐจ ๋ฒกํ„ฐ

๊ธฐํ•˜ํ•™์  ์ผ๊ด€ ์˜ค์ฐจ ๋ฒกํ„ฐ (GCEV):

e_G = \begin{bmatrix} e_p \\ e_R \end{bmatrix} = \begin{bmatrix} R^T(p - p_d) \\ (R_d^T R - R^T R_d)^\vee \end{bmatrix} \in \mathbb{R}^6

๋ฆฌ ๋Œ€์ˆ˜ ๊ธฐ๋ฐ˜ ์˜ค์ฐจ ๋ฒกํ„ฐ: ๋ฐฐ์น˜ ์˜ค์ฐจ์˜ ๋กœ๊ทธ ๋งต

\xi_{de} = \log(g_{de})^\vee

5.3.2 ์†๋„ ์˜ค์ฐจ ๋ฒกํ„ฐ

๋‘ ์ ‘์„  ๋ฒกํ„ฐ \dot{g} \in T_g SE(3)์™€ \dot{g}_d \in T_{g_d} SE(3)๊ฐ€ ๋‹ค๋ฅธ ์ ‘์„  ๊ณต๊ฐ„์— ์žˆ์œผ๋ฏ€๋กœ ์ง์ ‘ ๋น„๊ตํ•  ์ˆ˜ ์—†๋‹ค.

์›ํ•˜๋Š” ์†๋„์˜ ๋ณ€ํ™˜:

\hat{V}^*_d = g_{ed}\hat{V}^b_d g^{-1}_{ed}, \quad \text{where } g_{ed} = g^{-1}g_d

V^*_d = \text{Ad}_{g_{ed}} V^b_d

์†๋„ ์˜ค์ฐจ ๋ฒกํ„ฐ:

e_V = \begin{bmatrix} v^b \\ w^b \end{bmatrix} - \begin{bmatrix} R^T R_d v_d + R^T R_d \hat{\omega}_d R_d^T(p - p_d) \\ R^T R_d \omega_d \end{bmatrix} = \begin{bmatrix} e_v \\ e_\Omega \end{bmatrix}


5.4 SE(3) ์œ„์˜ ์—๋„ˆ์ง€ ํ•จ์ˆ˜

5.4.1 ์œ„์น˜ ์—๋„ˆ์ง€ ํ•จ์ˆ˜

ํ–‰๋ ฌ ๊ตฐ ๊ด€์ ์˜ ์œ„์น˜ ์—๋„ˆ์ง€:

P_1(g, g_d) = \text{tr}(K_R(I - R_d^T R)) + \frac{1}{2}(p - p_d)^T R_d K_p R_d^T(p - p_d)

๋ฆฌ ๋Œ€์ˆ˜ ๊ด€์ ์˜ ์œ„์น˜ ์—๋„ˆ์ง€:

P_2(g, g_d) = \langle\hat{\xi}_{de}, \hat{\xi}_{de}\rangle_{(0.5K_\xi, I)} = \frac{1}{2}\xi_{de}^T K_\xi \xi_{de}

P_1(g, g_d)์™€ P_2(g, g_d)๋Š” ๋ชจ๋‘ ์ขŒ๋ถˆ๋ณ€, ์–‘์ •์น˜, ์ด์ฐจ ํ˜•ํƒœ์ด๋‹ค.

5.4.2 ์šด๋™ ์—๋„ˆ์ง€

K(t, q, \dot{q}) = \frac{1}{2}e_V^T \tilde{M} e_V


5.5 ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด

5.5.1 ์†Œ์‚ฐ ์ œ์–ด ๋ฒ•์น™์œผ๋กœ์„œ์˜ ์ž„ํ”ผ๋˜์Šค ์ œ์–ด

์ „์ฒด ๊ธฐ๊ณ„์  ์—๋„ˆ์ง€ ํ•จ์ˆ˜ (๋ฆฌ์•„ํ‘ธ๋…ธํ”„ ํ•จ์ˆ˜):

V_i(t, q, \dot{q}) = K(t, q, \dot{q}) + P_i(t, q), \quad i \in \{1, 2\}

์†Œ์‚ฐ ์ œ์–ด ๋ฒ•์น™์˜ ์›ํ•˜๋Š” ์„ฑ์งˆ:

\dot{V}_i = -e_V^T K_d e_V

์ž„ํ”ผ๋˜์Šค ์ œ์–ด ๋ฒ•์น™:

\tilde{T}_i = \tilde{M}\dot{V}^*_d + \tilde{C}V^*_d + \tilde{G} - f_{G,i} - K_d e_V, \quad i \in \{1, 2\}

์—ฌ๊ธฐ์„œ f_{G,i} \in \mathbb{R}^6:

f_{G,1} = \begin{bmatrix} f_p \\ f_R \end{bmatrix} = \begin{bmatrix} R^T R_d K_p R_d^T(p - p_d) \\ (K_R R_d^T R - R^T R_d K_R)^\vee \end{bmatrix}

f_{G,2} = K_\xi \xi_{de}

5.5.2 ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด๋Š” SE(3)-๋“ฑ๋ณ€ ์ œ์–ด

GIC์˜ ์ค‘์š”ํ•œ ์žฅ์ ์€ ๊ณต๊ฐ„ ํ”„๋ ˆ์ž„์—์„œ ๊ธฐ์ˆ ํ•  ๋•Œ SE(3) ๋“ฑ๋ณ€์ด๋ผ๋Š” ๊ฒƒ์ด๋‹ค.

f_{G,1}์˜ ์ขŒ๋ถˆ๋ณ€์„ฑ:

f_{G,1}(g_l g, g_l g_d) = \begin{bmatrix} (R_l R)^T R_l R_d K_p(R_l R_d)^T(R_l p + p_l - R_l p_d - p_l) \\ (K_R(R_l R_d)^T R_l R - (R_l R)^T R_l R_d K_R)^\vee \end{bmatrix}

= \begin{bmatrix} R^T R_d K_p R_d(p - p_d) \\ (K_R R_d R - R^T R_d K_R)^\vee \end{bmatrix} = f_{G,1}(g, g_d)

f_{G,2}์˜ ์ขŒ๋ถˆ๋ณ€์„ฑ:

f_{G,2}(g_l g, g_l g_d) = K_\xi \log((g_l g_d)^{-1}(g_l g_e)) = K_\xi \log(g_d^{-1}g_e) = K_\xi \xi_{de}

SE(3)-๋“ฑ๋ณ€ ์ •์ฑ…์„ ์œ„ํ•œ ์ผ๋ฐ˜ ๋ ˆ์‹œํ”ผ:

  1. ์ •์ฑ…์ด ์ขŒ๋ถˆ๋ณ€์ด์–ด์•ผ ํ•จ
  2. ์ •์ฑ…์ด ๋ฌผ์ฒด ํ”„๋ ˆ์ž„ ์ขŒํ‘œ์—์„œ ๊ธฐ์ˆ ๋˜์–ด์•ผ ํ•จ

6. ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ (Future Works)

6.1 ๋น„์ „์—์„œ ํž˜๊นŒ์ง€์˜ SE(3)-๋“ฑ๋ณ€์„ฑ

ํ˜„์žฌ์˜ ๋น„์ „ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์€ โ€œ๋ชจ๋“  ์กฐ์ž‘์ด ํ”ฝ์•คํ”Œ๋ ˆ์ด์Šค ์‹œํ€€์Šค๋กœ ๊ฐ„์ฃผ๋  ์ˆ˜ ์žˆ๋‹คโ€๋Š” ์ฒ ํ•™์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ์‹ค์ œ ์ž‘์—…์€ ํž˜ ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์ปดํ”Œ๋ผ์ด์–ธ์Šค๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์˜ˆ์‹œ: - ๋ณ‘๋šœ๊ป‘ ๋Œ๋ ค ์—ด๊ธฐ - ๋ณผํŠธ-๋„ˆํŠธ ์กฐ๋ฆฝ - ํƒ€์ดํŠธ ํ• ์กฐ๋ฆฝ

ํž˜(๋˜๋Š” ๋ Œ์น˜)์€ SE(3) ๋‹ค์–‘์ฒด์˜ ์Œ๋Œ€ ๊ณต๊ฐ„์—์„œ ๋Œ€์ˆ˜๋ฐ˜ ๋งต์— ์˜ํ•ด ์กฐํ–ฅ๋˜๋Š” ๋‘ ๊ฐœ์˜ type-1 ๋ฒกํ„ฐ๋กœ ํ•ด์„๋  ์ˆ˜ ์žˆ๋‹ค.

6.2 ๋กœ๋ณดํ‹ฑ์Šค์™€ ์‹œ์Šคํ…œ์—์„œ์˜ ๋Œ€์นญ์„ฑ ๊นจ์ง

๋Œ€์นญ์„ฑ์ด ๊นจ์ง€๋Š” ์›์ธ๋“ค:

  1. ์šด๋™ํ•™์  ์ œ์•ฝ: ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ํŠน์ด ๋ฐฐ์น˜์— ์ ‘๊ทผํ•  ๋•Œ
  2. ์ œ์–ด ์ž…๋ ฅ ์ œ์•ฝ: ์ž…๋ ฅ์— ์ œ์•ฝ์ด ์žˆ๋Š” ์ œ์–ด ์‹œ์Šคํ…œ
  3. ๊ด€์ฐฐ ๊ณต๊ฐ„์˜ ๋ถˆ์™„์ „์„ฑ: ๊ธฐ์šธ์–ด์ง„ ์นด๋ฉ”๋ผ ๊ฐ๋„, ํ์ƒ‰

๊ตฐ๋ถˆ๋ณ€ MDP์—์„œ์˜ ๋Œ€์นญ์„ฑ ๊นจ์ง:

๊ตฐ๋ถˆ๋ณ€ MDP๋Š” ๊ตฐ๋ถˆ๋ณ€ ๋ณด์ƒ ํ•จ์ˆ˜์™€ ์ „์ด ํ™•๋ฅ ์„ ๊ฐ€์ •ํ•˜์ง€๋งŒ, ๋กœ๋ด‡ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์šด๋™ํ•™์  ์ œ์•ฝ ๋“ฑ์— ์˜ํ•ด ์†์ƒ๋  ์ˆ˜ ์žˆ๋‹ค.


7. ๊ฒฐ๋ก  (Conclusions)

์ด ํŠœํ† ๋ฆฌ์–ผ ์„œ๋ฒ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ณดํ‹ฑ์Šค ์‘์šฉ์„ ์œ„ํ•œ ๊ธฐํ•˜ํ•™์  ๋”ฅ๋Ÿฌ๋‹๊ณผ ์ œ์–ด์˜ ์ตœ์‹  ๋ฐœ์ „์„ ๊ฒ€ํ† ํ–ˆ๋‹ค.

์ฃผ์š” ๋‚ด์šฉ:

  1. ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ์—”๋“œ์ดํŽ™ํ„ฐ์˜ SE(3) ๋‹ค์–‘์ฒด ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ˆ˜ํ•™์  ๋ฐฐ๊ฒฝ ์ œ์‹œ
  2. SE(3)-๋“ฑ๋ณ€ ๋”ฅ๋Ÿฌ๋‹์˜ ๊ณต์‹ํ™”์™€ ์ด๋ก , ๋ฐฑ๋ณธ ์‹ ๊ฒฝ๋ง ์†Œ๊ฐœ
  3. ๋ชจ๋ฐฉ ํ•™์Šต๊ณผ ๊ฐ•ํ™” ํ•™์Šต์— ํ™œ์šฉ๋˜๋Š” SE(3)-๋“ฑ๋ณ€ ๋ชจ๋ธ์˜ ์ตœ์‹  ์—ฐ๊ตฌ ์†Œ๊ฐœ
  4. SE(3)-๋“ฑ๋ณ€ ํ•™์Šต ๋ชจ๋“ˆ์˜ ์ €์ˆ˜์ค€ ์ œ์–ด ์ธต์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” SE(3)-๋“ฑ๋ณ€ ์ œ์–ด ๋ฐฉ๋ฒ• ์ œ์‹œ
  5. ๋“ฑ๋ณ€ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„์™€ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ ๋…ผ์˜

8. ๋ถ€๋ก (Appendix)

A.1 ๋งค๋„๋Ÿฌ์šด ๋‹ค์–‘์ฒด (Smooth Manifolds)

A.1.1 ์ ‘์„  ๊ณต๊ฐ„๊ณผ ์Œ๋Œ€ ๊ณต๊ฐ„

์ ‘์„  ๊ณต๊ฐ„ T_p M: ๋‹ค์–‘์ฒด M ์œ„์˜ ์  p์—์„œ ๋ชจ๋“  ์ ‘์„  ๋ฒกํ„ฐ์˜ ์ง‘ํ•ฉ

์ขŒํ‘œ ์ฐจํŠธ (x^1, \ldots, x^n)์—์„œ T_p M์˜ ๊ธฐ์ €: X_p = \sum_{i=1}^{n} X^i \frac{\partial}{\partial x^i} = X^i \frac{\partial}{\partial x^i}

์Œ๋Œ€ ๊ณต๊ฐ„ (Cotangent Space) T^*_p M: ์ ‘์„  ๊ณต๊ฐ„์˜ ์Œ๋Œ€ ๊ณต๊ฐ„, ๋ชจ๋“  ์„ ํ˜• ๋ฒ”ํ•จ์ˆ˜์˜ ์ง‘ํ•ฉ

์Œ๋Œ€ ๊ธฐ์ €: \{dx^1, \ldots, dx^n\}

dx^i\left(\frac{\partial}{\partial x^j}\right) = \delta^i_j

์ ‘์„  ๋‹ค๋ฐœ (Tangent Bundle): TM = \bigsqcup_{p \in M} T_p M

A.1.2 ๋งค๋„๋Ÿฌ์šด ์‚ฌ์ƒ์˜ ๋ฏธ๋ถ„

F : M \to N์ด ๋งค๋„๋Ÿฌ์šด ์‚ฌ์ƒ์ผ ๋•Œ, p์—์„œ์˜ ๋ฏธ๋ถ„:

dF_p : T_p M \to T_{F(p)} N

dF_p(X_p)(f) = X_p(f \circ F)

๊ตญ์†Œ ์ขŒํ‘œ์—์„œ: dF_p(X_p) = \left(\frac{\partial F^j(x)}{\partial x^i} X^i\right)\bigg|_p \frac{\partial}{\partial y^j}\bigg|_{F(p)}

A.1.3 ํ‘ธ์‹œํฌ์›Œ๋“œ์™€ ํ’€๋ฐฑ

ํ‘ธ์‹œํฌ์›Œ๋“œ (Pushforward): F๊ฐ€ ๋ฏธ๋ถ„๋™ํ˜•์‚ฌ์ƒ์ผ ๋•Œ: (F_* X)_q = dF_{F^{-1}(q)}(X_{F^{-1}(q)}) = dF_p(X_p)

ํ’€๋ฐฑ (Pullback): ์Œ๋Œ€ ๋ฒกํ„ฐ์žฅ \omega์— ๋Œ€ํ•ด: (F^* \omega)_p = dF^*_{F(p)}(\omega_{F(p)})

A.1.4 ๋ฒกํ„ฐ์žฅ์˜ ๋ฆฌ ๋ฏธ๋ถ„

V \in \mathfrak{X}(M)์˜ ํ”Œ๋กœ์šฐ F_t์— ๋Œ€ํ•ด, ๋ฒกํ„ฐ์žฅ W์˜ V์— ๋Œ€ํ•œ ๋ฆฌ ๋ฏธ๋ถ„:

(\mathcal{L}_V W)_p := \frac{d}{dt} d(F_{-t})_{F_t(p)}(W_{F_t(p)})\bigg|_{t=0}

= [V, W]_p


A.2 ๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜ (Spherical Harmonics)

๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜๋Š” ๊ตฌ๋ฉด ์ขŒํ‘œ๊ณ„์—์„œ ๋ผํ”Œ๋ผ์Šค ๋ฐฉ์ •์‹์„ ํ’€ ๋•Œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค.

๋ผํ”Œ๋ผ์Šค ๋ฐฉ์ •์‹: \nabla^2 f(x, y, z) = 0

๊ตฌ๋ฉด ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ๋ณ€์ˆ˜ ๋ถ„๋ฆฌ: f(r, \theta, \phi) = R(r)Y(\theta, \phi)

๊ตฌ๋ฉด ์กฐํ™” ํ•จ์ˆ˜: Y^l_m(\theta, \phi) = Ne^{im\phi}P^l_m(\cos\theta)

๋ผํ”Œ๋ผ์Šค ๋ฐฉ์ •์‹์˜ ์ผ๋ฐ˜ํ•ด: f(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f^l_m r^l Y^l_m(\theta, \phi)


A.3 ๋“ฑ๋ณ€ ๊ตฌ๋ฉด ์ฑ„๋„ ๋„คํŠธ์›Œํฌ (eSCN)

eSCN์€ ๋ฉ”์‹œ์ง€ ํŒจ์‹ฑ ๋ฐฉํ–ฅ์ด y์ถ•์— ์ •๋ ฌ๋œ ์ฐธ์กฐ ํ”„๋ ˆ์ž„์—์„œ ํด๋ ™์‹œ-๊ณ ๋ฅด๋‹จ ๊ณ„์ˆ˜์˜ ํฌ์†Œ์„ฑ์„ ํ™œ์šฉํ•œ๋‹ค.

์ •๋ ฌ๋œ ์ฐธ์กฐ ํ”„๋ ˆ์ž„์—์„œ์˜ ๊ตฌ๋ฉด ์กฐํ™”: Y^l_m(\hat{e}_y) = \delta_{m0}

ํšŒ์ „-์ ์šฉ-์—ญํšŒ์ „ ์ „๋žต: f^{(out)}(x) = \sum_i D(R_y^{-1})k(\|x - x_j\|\hat{e}_y)D(R_y)f_j

์ด๋ฅผ ํ†ตํ•ด SO(2) ์ปจ๋ณผ๋ฃจ์…˜ (์ŠคํŽ™ํŠธ๋Ÿผ ๋„๋ฉ”์ธ์—์„œ ์ ๋ณ„ ๊ณฑ์…ˆ)์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.


A.4 ์šฐ๋ถˆ๋ณ€ ๋ฉ”ํŠธ๋ฆญ์— ๋Œ€ํ•œ ์ฝ”๋ฉ˜ํŠธ

SE(3)์—์„œ๋Š” ์ด์ค‘๋ถˆ๋ณ€(bi-invariance)์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ , ์ขŒ๋ถˆ๋ณ€ ๋˜๋Š” ์šฐ๋ถˆ๋ณ€ ์ค‘ ํ•˜๋‚˜๋งŒ ๋งŒ์กฑํ•  ์ˆ˜ ์žˆ๋‹ค.

์šฐ๋ถˆ๋ณ€ ์˜ค์ฐจ ํ•จ์ˆ˜: \Psi^R(gg_r, g_d g_r) = \frac{1}{2}\|I - gg_r g_r^{-1}g_d^{-1}\|_F^2 = \Psi^R(g, g_d)

\Psi^R(g, g_d) = \text{tr}(I - RR_d^T) + \frac{1}{2}(p - RR_d^T p_d)^T(p - RR_d^T p_d)

์šฐ๋ถˆ๋ณ€์—์„œ๋Š” ํ‰ํ–‰์ด๋™ ์„ฑ๋ถ„์ด ํšŒ์ „์˜ ์˜ํ–ฅ์„ ๋ฐ›์ง€๋งŒ, ์ขŒ๋ถˆ๋ณ€์—์„œ๋Š” ํ‰ํ–‰์ด๋™์ด ํšŒ์ „๊ณผ ๋…๋ฆฝ์ ์ด๋‹ค.

์šฐ๋ถˆ๋ณ€ ์˜ค์ฐจ ๋ฒกํ„ฐ: e^R_G = \begin{bmatrix} e^R_p \\ e^R_R \end{bmatrix} = \begin{bmatrix} (p - RR_d^T p_d) \\ (RR_d^T - R_d R^T)^\vee \end{bmatrix}

e^R_p = R(R^T p - R_d^T p_d)

์ขŒ๋ถˆ๋ณ€ ์˜ค์ฐจ ๋ฒกํ„ฐ e^L_p = R^T(p - p_d)์™€์˜ ํ•ต์‹ฌ ์ฐจ์ด:

  • ์šฐ๋ถˆ๋ณ€ ์˜ค์ฐจ ๋ฒกํ„ฐ๋Š” ๊ณต๊ฐ„ ํ”„๋ ˆ์ž„์— ์˜์กด
  • ์ขŒ๋ถˆ๋ณ€ ์˜ค์ฐจ ๋ฒกํ„ฐ๋Š” ๋…๋ฆฝ์ 

์ด์ค‘๋ถˆ๋ณ€์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ํŠน์ • ๋ถˆ๋ณ€์„ฑ์˜ ํ•œ๊ณ„๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถฉ๋ถ„ํ•˜๋‹ค.

๐Ÿ“ ํ•ต์‹ฌ ์š”์•ฝ

๊ฐœ๋… ํ•ต์‹ฌ ๋‚ด์šฉ
SE(3) 3D ๊ณต๊ฐ„์˜ ๋ชจ๋“  ๊ฐ•์ฒด ๋ณ€ํ™˜ (ํšŒ์ „ + ํ‰ํ–‰์ด๋™)์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ตฐ
๋“ฑ๋ณ€์„ฑ ์ž…๋ ฅ ๋ณ€ํ™˜์ด ์ถœ๋ ฅ์—์„œ๋„ ๋™์ผํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ์„ฑ์งˆ
๋ถˆ๋ณ€์„ฑ ์ž…๋ ฅ ๋ณ€ํ™˜์—๋„ ์ถœ๋ ฅ์ด ๋ณ€ํ•˜์ง€ ์•Š๋Š” ์„ฑ์งˆ
์กฐํ–ฅ ๊ฐ€๋Šฅ ํŠน์ง• Wigner-D ํ–‰๋ ฌ์— ์˜ํ•ด ๋ณ€ํ™˜๋˜๋Š” ํŠน์ง• ๋ฒกํ„ฐ
TFN SE(3)-๋“ฑ๋ณ€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์˜ ๊ธฐ์ดˆ ์•„ํ‚คํ…์ฒ˜
์ด์ค‘๋“ฑ๋ณ€์„ฑ ์žฅ๋ฉด๊ณผ ๊ทธ๋ž˜์Šคํ”„ ๋ชจ๋‘์— ๋Œ€ํ•œ ๋“ฑ๋ณ€์„ฑ
GIC SE(3) ๋‹ค์–‘์ฒด ์œ„์—์„œ ์ •์˜๋œ ๊ธฐํ•˜ํ•™์  ์ž„ํ”ผ๋˜์Šค ์ œ์–ด

Copyright 2026, JungYeon Lee