Curieux.JY
  • JungYeon Lee
  • Post
  • Projects
  • Note

On this page

  • ๐Ÿ” Ping Review
  • ๐Ÿ”” Ring Review
    • ๐Ÿค– โ€œ์†๊ฐ€๋ฝ ๋๋งŒ ์“ฐ์ง€ ๋ง๊ณ , ์†๋ฐ”๋‹ฅ๋„ ์จ!โ€
    • ๐ŸŽฏ ์™œ ์ด ์—ฐ๊ตฌ๊ฐ€ ์ค‘์š”ํ•œ๊ฐ€?
      • ๊ธฐ์กด ๋ฐฉ์‹์˜ ํ•œ๊ณ„: โ€œ์†๊ฐ€๋ฝ ๋ ๊ทธ๋ฆฝ์˜ ๋น„๊ทนโ€
      • ํ•ต์‹ฌ ํ†ต์ฐฐ: โ€œ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ์ด ๋ชจ๋“  ๊ฒƒ์„ ๋ฐ”๊พผ๋‹คโ€
    • ๐Ÿ”ฌ ๊ธฐ์ˆ ์  ๊นŠ์ด ํŒŒํ—ค์น˜๊ธฐ
      • 1. ๋ฌธ์ œ ์ •์˜: ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์ด๋ž€?
      • 2. ์™œ ๊ธฐ์กด ๋ฐฉ์‹์ด ์‹คํŒจํ•˜๋Š”๊ฐ€?
      • 3. Graspโ€™D์˜ ํ•ด๋ฒ•: ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋ฒ•
      • 4. ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜
      • 5. ์ ‘์ด‰๋ ฅ ๋ชจ๋ธ๋ง: ๋ฌผ๋ฆฌํ•™์˜ ์•„๋ฆ„๋‹ค์›€
    • ๐Ÿ“Š ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„
      • ์ •๋Ÿ‰์  ๋น„๊ต: ObMan vs Graspโ€™D
      • ์งˆ์  ๋น„๊ต: ๋ˆˆ์œผ๋กœ ๋ณด๋Š” ์ฐจ์ด
      • RGB-D ์žฌ๊ตฌ์„ฑ์—์„œ์˜ ๊ฒ€์ฆ
      • Ablation Study: ๊ฐ ๊ธฐ๋ฒ•์˜ ๊ธฐ์—ฌ๋„
    • ๐ŸŽ“ ์ด๋ก ์  ํ†ต์ฐฐ: ์™œ ์ด๊ฒŒ ์ž‘๋™ํ•˜๋Š”๊ฐ€?
      • ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ์ฒ ํ•™
      • Contact-Invariant Optimization์˜ ์žฌ๋ฐœ๊ฒฌ
      • SDF์˜ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ
    • ๐Ÿ”ฎ ๋ฏธ๋ž˜ ์ „๋ง ๋ฐ ํ•œ๊ณ„
      • ํ˜„์žฌ์˜ ํ•œ๊ณ„
      • ๋ฐœ์ „ ๋ฐฉํ–ฅ
      • ๋” ๋„“์€ ๋งฅ๋ฝ: ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๋ถ€์ƒ
    • ๐Ÿ› ๏ธ ์‹ค๋ฌด์ž๋ฅผ ์œ„ํ•œ ํ•ต์‹ฌ ํ…Œ์ดํฌ์–ด์›จ์ด
      • ์ด ๋…ผ๋ฌธ์„ ๋‹น์žฅ ์ ์šฉํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
      • ๊ตฌํ˜„ ํŒ:
      • ์—ฐ๊ตฌ ํ™•์žฅ ์•„์ด๋””์–ด:
    • ๐Ÿ“š ๊ด€๋ จ ์—ฐ๊ตฌ ๋งฅ๋ฝ
      • ์ด ๋…ผ๋ฌธ์ด ์ธ์šฉํ•˜๋Š” ํ•ต์‹ฌ ๋…ผ๋ฌธ๋“ค:
      • ์ด ๋…ผ๋ฌธ์„ ์ธ์šฉํ•œ ํ›„์† ์—ฐ๊ตฌ๋“ค:
    • ๐ŸŽฌ ๊ฒฐ๋ก : ๋‹จ์ˆœํ•จ์˜ ์Šน๋ฆฌ
  • โ›๏ธ Dig Review
    • ๋ฌธ์ œ ์„ค์ • ๋ฐ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„
    • Grasp'D: ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ
    • ์ ‘์ด‰ ๋ชจ๋ธ๋ง๊ณผ ์†-๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์˜ ์ˆ˜์น˜์  ์ •์‹ํ™”
    • ์ตœ์ ํ™” ๊ณผ์ •์˜ ํ•ต์‹ฌ ๊ธฐ๋ฒ•๋“ค: ๋‚œ์ œ ๋Œ€์‘ ๋ฐ ๋ชฉ์ ํ•จ์ˆ˜ ๊ตฌ์„ฑ
    • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๋น„๊ต ํ‰๊ฐ€
    • ๊ตฌํ˜„ ๊ด€๋ จ ๊ณ ๋ ค์‚ฌํ•ญ (์ดˆ๊ธฐํ™” ์ „๋žต, ํšจ์œจ์„ฑ, ์ผ๋ฐ˜ํ™” ๋“ฑ)
    • ๋งบ์Œ๋ง

๐Ÿ“ƒGraspโ€™D ๋ฆฌ๋ทฐ

grasp
dexterity
Differentiable Contact-rich Grasp Synthesis for Multi-fingered Hands
Published

December 20, 2025

๐Ÿ” Ping. ๐Ÿ”” Ring. โ›๏ธ Dig. A tiered review series: quick look, key ideas, deep dive.

  • Paper Link
  • Project
  • Code
  1. ๐Ÿค– Graspโ€™D๋Š” high-dimensional multi-finger hand ๋ชจ๋ธ์„ ์œ„ํ•ด ์•ˆ์ •์ ์ด๊ณ  ์ ‘์ด‰์ด ํ’๋ถ€ํ•œ grasp๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” differentiable simulation ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
  2. โœจ ์ด ๋ฐฉ๋ฒ•์€ ๋ถˆ์—ฐ์†์ ์ธ ํ‘œ๋ฉด, ์ ‘์ด‰ ํฌ์†Œ์„ฑ ๋ฐ ๋ณต์žกํ•œ ์ตœ์ ํ™” ์ง€ํ˜•๊ณผ ๊ฐ™์€ grasp synthesis์˜ ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด coarse-to-fine SDF collision, leaky gradients, ๊ทธ๋ฆฌ๊ณ  Contact-Invariant Optimization์—์„œ ์˜๊ฐ์„ ๋ฐ›์€ ๋ฌธ์ œ ์™„ํ™”๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค.
  3. ๐Ÿ“ˆ Graspโ€™D๋Š” ๊ธฐ์กด analytic synthesis ๋ฐฉ์‹ ๋Œ€๋น„ 4๋ฐฐ ๋” ๋†’์€ contact area๋ฅผ ๊ฐ€์ง„ grasp๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ํ–ฅ์ƒ๋œ stability์™€ ๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ์„ ์ œ๊ณตํ•จ์„ ์‹คํ—˜์ ์œผ๋กœ ์ž…์ฆํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ” Ping Review

๐Ÿ” Ping โ€” A light tap on the surface. Get the gist in seconds.

Graspโ€™D๋Š” ๊ณ ์ฐจ์› ๋‹ค์ง€(multi-fingered) ํ•ธ๋“œ ๋ชจ๋ธ์„ ์œ„ํ•œ ํ˜„์‹ค์ ์ด๊ณ  ์•ˆ์ •์ ์ธ ์ ‘์ด‰-ํ’๋ถ€(contact-rich) ๊ทธ๋žฉ(grasp)์„ ํ•ฉ์„ฑํ•˜๋Š” ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ๋ถ„์„์ (analytic) ๊ทธ๋žฉ ํ•ฉ์„ฑ ๋ฐฉ์‹์€ ์ข…์ข… ๊นจ์ง€๊ธฐ ์‰ฝ๊ณ (brittle) ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์œผ๋ฉฐ, ํŠนํžˆ ๋†’์€ ์ ‘์ด‰์„ ์š”๊ตฌํ•˜๋Š” ํŒŒ์›Œ ๊ทธ๋žฉ(power grasp)์„ ์ƒ์„ฑํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์‚ฌ์‹ค์ ์ด๊ณ  ํšจ์œจ์ ์ธ ๊ณ ์ ‘์ด‰ ๊ทธ๋žฉ ํ•ฉ์„ฑ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  (Core Methodology)

Graspโ€™D๋Š” ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ทธ๋žฉ ํ’ˆ์งˆ์„ ์ธก์ •ํ•˜๊ณ  ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฐ˜(sampling-based) ๋ฐฉ๋ฒ•์˜ ๋น„ํšจ์œจ์„ฑ์„ ๊ทน๋ณตํ•ฉ๋‹ˆ๋‹ค. ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ทธ๋žฉ ํ•ฉ์„ฑ์— ์ ์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ๊ณผ์ œ์™€ ํ•ด๊ฒฐ์ฑ…์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  1. ๋น„ํ‰ํ™œ ๊ฐ์ฒด ํ˜•์ƒ (Non-smooth Object Geometry):
    • ๊ณผ์ œ: ๊ฐ์ฒด์˜ ๋ชจ์„œ๋ฆฌ๋‚˜ ๋ชจ์„œ๋ฆฌ์™€ ๊ฐ™์€ ๋น„ํ‰ํ™œํ•œ ๋ถ€๋ถ„์—์„œ๋Š” ์ ‘์ด‰ ํž˜์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ๋ถˆ์—ฐ์†์ ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๊ฐ€ ์ ‘์ด‰ ์œ„์น˜๋ฅผ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉํ•ดํ•ฉ๋‹ˆ๋‹ค.
    • ํ•ด๊ฒฐ์ฑ…: SDF(Signed Distance Function)๋ฅผ ์ด์šฉํ•œ coarse-to-fine ํ‰ํ™œํ™” ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ดˆ๊ธฐ ์ตœ์ ํ™” ๋‹จ๊ณ„์—์„œ๋Š” ๊ฐ์ฒด ํ‘œ๋ฉด์„ r > 0 ๋ ˆ๋ฒจ ์…‹์œผ๋กœ ์ •์˜ํ•˜์—ฌ ํ‰ํ™œํ™”๋˜๊ณ  ํŒจ๋”ฉ๋œ(padded) ๋ฒ„์ „์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ r ๊ฐ’์„ ์ ์ง„์ ์œผ๋กœ 0์œผ๋กœ ์ค„์—ฌ ์›๋ž˜์˜ ์ƒ์„ธํ•œ ํ‘œ๋ฉด ํ˜•์ƒ์— ์ˆ˜๋ ดํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ตœ์ ํ™”๊ฐ€ ์ดˆ๊ธฐ์—๋Š” ๋” ๋ถ€๋“œ๋Ÿฌ์šด ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๋”ฐ๋ผ ๋Œ€๋žต์ ์ธ ๊ทธ๋žฉ์„ ์ฐพ๊ณ , ๋‚˜์ค‘์—๋Š” ๋ฏธ์„ธํ•œ ํ˜•์ƒ์— ์ ํ•ฉํ•˜๊ฒŒ ์กฐ์ •๋  ์ˆ˜ ์žˆ๋„๋ก ๋•์Šต๋‹ˆ๋‹ค.
  2. ์ ‘์ด‰ ํฌ์†Œ์„ฑ ๋ฐ ์†Œ์‹ค ๊ทธ๋ž˜๋””์–ธํŠธ (Contact Sparsity & Vanishing Gradients):
    • ๊ณผ์ œ: ํ•ธ๋“œ์™€ ๊ฐ์ฒด๊ฐ€ ์ ‘์ด‰ํ•˜์ง€ ์•Š์„ ๋•Œ, ์•„์ฃผ ์ž‘์€ ํ•ธ๋“œ ํฌ์ฆˆ ๋ณ€ํ™”๋Š” ์ ‘์ด‰์„ ์œ ๋ฐœํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ์ ‘์ด‰ ํž˜์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ 0์ด ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ตœ์ ํ™”๊ฐ€ ์ƒˆ๋กœ์šด ์ ‘์ด‰์„ ํ˜•์„ฑํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
    • ํ•ด๊ฒฐ์ฑ…: โ€œleaky gradientโ€ ๊ฐœ๋…์„ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค. ๋น„์ ‘์ด‰ ์ƒํƒœ์˜ ์ ‘์ด‰์ (inactive contacts)์— ๋Œ€ํ•ด์„œ๋„ ํž˜ ๊ณ„์‚ฐ์— ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ โ€œ๋ˆ„์ถœโ€๋˜๋„๋ก ํ—ˆ์šฉํ•ฉ๋‹ˆ๋‹ค. ์‹ (6)์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด, \phi(x) \ge 0์ผ ๋•Œ๋„ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์™„์ „ํžˆ 0์ด ๋˜์ง€ ์•Š๋„๋ก \alpha ๊ณ„์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž‘์€ ๊ฐ’์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ตœ์ ํ™”๊ฐ€ ๋น„์ ‘์ด‰ ์ƒํƒœ์—์„œ๋„ ํ•ธ๋“œ๊ฐ€ ๊ฐ์ฒด๋ฅผ ํ–ฅํ•ด ์ด๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ํšจํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ ์‹ ํ˜ธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. \frac{\partial \lVert f_n \rVert}{\partial q} := \begin{cases} k_n \frac{\partial \phi}{\partial q} & \text{if } \phi(x) < 0 \\ \alpha k_n \frac{\partial \phi}{\partial q} & \text{otherwise} \end{cases} ์—ฌ๊ธฐ์„œ f_n์€ ๋ฒ•์„  ํž˜, q๋Š” ํ•ธ๋“œ ํฌ์ฆˆ, \phi(x)๋Š” ์นจํˆฌ ๊นŠ์ด(SDF ๊ฐ’), k_n์€ ๋ฒ•์„  ๊ฐ•์„ฑ ๊ณ„์ˆ˜, \alpha \in [0,1]๋Š” ๋ˆ„์ถœ ๊ณ„์ˆ˜์ž…๋‹ˆ๋‹ค.
  3. ํ—˜์ค€ํ•œ ์ตœ์ ํ™” ์ง€ํ˜• (Rugged Optimization Landscape):
    • ๊ณผ์ œ: ๋งŽ์€ ์ ‘์ด‰์ด ํ™œ์„ฑํ™”๋  ๋•Œ, ํ•ธ๋“œ ํฌ์ฆˆ์˜ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ ์ ‘์ด‰ ํž˜์— ํฐ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐํ•˜์—ฌ ๊ทธ๋žฉ ๋ฉ”ํŠธ๋ฆญ์˜ ์ตœ์ ํ™” ์ง€ํ˜•์ด ๋งค์šฐ ํ—˜์ค€ํ•ด์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    • ํ•ด๊ฒฐ์ฑ…: Contact-Invariant Optimization (CIO) [68, 69]์—์„œ ์˜๊ฐ์„ ๋ฐ›์€ ๋ฌธ์ œ ์™„ํ™”(problem relaxation) ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ œ๋ฅผ ๋‘ ๊ฐ€์ง€ ๊ตฌ์„ฑ ์š”์†Œ๋กœ ๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค:
      • Task Loss (L_{task}): ๊ฐ์ฒด์— ๊ฐ€ํ•ด์ง„ ์ดˆ๊ธฐ ์†๋„๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ €ํ•ญํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ โ€˜์›ํ•˜๋Š”โ€™ ๋˜๋Š” โ€˜์ฒ˜๋ฐฉ๋œโ€™ ์ ‘์ด‰ ํž˜(\hat{f}_c)์„ ์ฐพ์Šต๋‹ˆ๋‹ค. ์ด ๋ถ€๋ถ„์—์„œ๋Š” ์‹ค์ œ ํ•ธ๋“œ ํฌ์ฆˆ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜ ๋Œ€์‹  \hat{f}_c๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. L_{grasp} = \frac{1}{M} \sum_{m=1}^{M} \lVert \dot{u}^{(T)}_o \rVert ์—ฌ๊ธฐ์„œ \dot{u}^{(T)}_o๋Š” M๋ฒˆ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ›„ ๊ฐ์ฒด์˜ ์ตœ์ข… ์†๋„์ž…๋‹ˆ๋‹ค. L_{task}๋Š” ์ด L_{grasp}์™€ ๋™์ผํ•˜๊ฒŒ ๊ณ„์‚ฐ๋˜๋‚˜, ์ ‘์ด‰ ํž˜ f_c ๋Œ€์‹  \hat{f}_c๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
      • Physics Violation Loss (L_{phys}): ํ˜„์žฌ ํ•ธ๋“œ ๊ตฌ์„ฑ q_h๊ฐ€ ์œ„์—์„œ ๊ฒฐ์ •๋œ ์›ํ•˜๋Š” ํž˜ \hat{f}_c๋ฅผ ์‹ค์ œ๋กœ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ•ธ๋“œ ํฌ์ฆˆ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹ค์ œ ์ ‘์ด‰ ํž˜ f_c(q_h)์™€ \hat{f}_c ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•ฉ๋‹ˆ๋‹ค. L_{phys}(q_h, \hat{f}_c) = \lVert f_c(q_h) - \hat{f}_c \rVert ์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋ฌผ๋ฆฌ์  ์œ„๋ฐ˜(physics violation)์„ ์ œ์•ฝ ์กฐ๊ฑด์ด ์•„๋‹Œ ๋น„์šฉ(cost)์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์—ฌ ์ตœ์ ํ™” ๊ณผ์ •์„ ๋” ์œ ์—ฐํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.

์ƒ์„ธ ๊ตฌํ˜„ (Detailed Implementation)

  • ๊ฐ•์ฒด ์—ญํ•™ (Rigid Body Dynamics): ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๊ฐ„๋‹จํ•œ ๊ฐ•์ฒด ์—ญํ•™์„ ์‚ฌ์šฉํ•˜๋ฉฐ, ํ•ธ๋“œ๋Š” ํ‚ค๋„ค๋งˆํ‹ฑ(kinematic)์œผ๋กœ, ๊ฐ์ฒด๋Š” ๋‹ค์ด๋‚ด๋ฏน(dynamic)์œผ๋กœ ๋ชจ๋ธ๋ง๋ฉ๋‹ˆ๋‹ค. ์„ธ๋ฏธ-์ž„ํ”Œ๋ฆฌ์‹ฏ ์˜ค์ผ๋Ÿฌ(semi-implicit Euler) ์—…๋ฐ์ดํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ๋ฅผ ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค.
  • ๊ฐ์ฒด ๋ชจ๋ธ (Object Model): ๊ฐ์ฒด๋Š” ์ด์‚ฐํ™”๋œ SDF(Discretized SDF)๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์ด๋Š” Mesh์—์„œ ์ถ”์ถœํ•˜๊ฑฐ๋‚˜ RGB-D ์žฌ๊ตฌ์„ฑ์—์„œ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SDF์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋Š” ์ ‘์ด‰ ๋ฒ•์„ ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  • ์ ‘์ด‰ ๋™์—ญํ•™ (Contact Dynamics): ์ ‘์ด‰ ํž˜์€ ํŽ˜๋„ํ‹ฐ ๊ธฐ๋ฐ˜(penalty-based)์œผ๋กœ ๊ณ„์‚ฐ๋˜๋ฉฐ, ๋ฒ•์„  ์„ฑ๋ถ„์€ ์นจํˆฌ ๊นŠ์ด์— ๋น„๋ก€ํ•˜๊ณ , ๋งˆ์ฐฐ ์„ฑ๋ถ„์€ Coulomb ๋งˆ์ฐฐ ๋ชจ๋ธ์„ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค.
  • ์ถ”๊ฐ€ ํœด๋ฆฌ์Šคํ‹ฑ ์†์‹ค (Additional Heuristic Losses): ๊ฒฐ๊ณผ ๊ทธ๋žฉ์˜ ํƒ€๋‹น์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค:
    • L_{range}(q_h): ํ•ธ๋“œ ์กฐ์ธํŠธ๊ฐ€ ๋ฒ”์œ„์˜ ์ค‘์•™์— ์œ„์น˜ํ•˜๋„๋ก ์žฅ๋ คํ•ฉ๋‹ˆ๋‹ค.
    • L_{limit}(q_h): ํ•ธ๋“œ ์กฐ์ธํŠธ๊ฐ€ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ๊ฒƒ์„ ํŽ˜๋„ํ‹ฐํ•ฉ๋‹ˆ๋‹ค.
    • L_{inter}(q_h): ํ•ธ๋“œ ๋‚ด๋ถ€์˜ ์ž๊ธฐ-๊ต์ฐจ(self-intersection)๋ฅผ ํŽ˜๋„ํ‹ฐํ•ฉ๋‹ˆ๋‹ค.
  • ์ตœ์ ํ™” (Optimization): Modified Differential Multiplier Method [74]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ L_{task} < C_{task}์™€ L_{limit} < C_{limit}๋ฅผ ์ œ์•ฝ ์กฐ๊ฑด์œผ๋กœ, L_{phys}, L_{range}, L_{inter}๋ฅผ ์ตœ์†Œํ™”ํ•ฉ๋‹ˆ๋‹ค. Adamax [54] ์˜ตํ‹ฐ๋งˆ์ด์ €๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ (Experiments and Results)

Graspโ€™D๋Š” ShapeNet [11] ๋ชจ๋ธ๊ณผ YCB RGB-D ๋ฐ์ดํ„ฐ์…‹ [10]์—์„œ ์žฌ๊ตฌ์„ฑ๋œ ๊ฐ์ฒด Mesh์— ๋Œ€ํ•ด ํ‰๊ฐ€๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

  • ํ‰๊ฐ€ ์ง€ํ‘œ (Evaluation Metrics): ์ ‘์ด‰ ๋ฉด์ (Contact Area, CA), ๊ต์ฐจ ๋ถ€ํ”ผ(Intersection Volume, IV), CA/IV ๋น„์œจ, Ferrari-Canny ฯต ๋ฉ”ํŠธ๋ฆญ, Volume ๋ฉ”ํŠธ๋ฆญ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์œ„(Simulation Displacement, SD)๊ฐ€ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. SD๋Š” PyBullet [16] ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ธก์ •๋ฉ๋‹ˆ๋‹ค.
  • ShapeNet ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๊ทธ๋žฉ ํ•ฉ์„ฑ: ObMan [40] ๋ฐ์ดํ„ฐ์…‹(GrastIt! [67] ๊ธฐ๋ฐ˜ ๋ถ„์„์  ํ•ฉ์„ฑ)๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ, Graspโ€™D๋Š” 4๋ฐฐ ๋” ๋†’์€ ์ ‘์ด‰ ๋ฉด์ (42 cm^2 vs 9.4 cm^2)์„ ๊ฐ€์ง„ ๊ทธ๋žฉ์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋Š” ํ›จ์”ฌ ๋†’์€ ์•ˆ์ •์„ฑ(SD 0.59 cm vs 1.95 cm)์œผ๋กœ ์ด์–ด์ง‘๋‹ˆ๋‹ค.
  • RGB-D ์ž…๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ์˜ ๊ทธ๋žฉ ํ•ฉ์„ฑ: Graspโ€™D๋Š” ์žฌ๊ตฌ์„ฑ๋œ ๊ฐ์ฒด ๋ชจ๋ธ(๋ถˆ์™„์ „ํ•œ ์žฌ๊ตฌ์„ฑ ํฌํ•จ)์— ๋Œ€ํ•ด์„œ๋„ ๊ทธ๋žฉ ํ•ฉ์„ฑ์ด ๊ฐ€๋Šฅํ•จ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์‹ค์ œ ํ™˜๊ฒฝ์˜ RGB-D ์ž…๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ ๊ทธ๋žฉ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
  • Ablation Study:
    • Problem Relaxation์˜ ์ค‘์š”์„ฑ: ์™„ํ™”๋œ ๋ฌธ์ œ ๊ณต์‹ํ™”๊ฐ€ ์—†์„ ๊ฒฝ์šฐ(Graspโ€™D w/o problem relaxation), ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜์–ด ์ ‘์ด‰ ๋ฉด์ ์ด ๋งค์šฐ ๋‚ฎ์•„์ง€๋Š” ๋“ฑ ๋ชจ๋“  ์ง€ํ‘œ์—์„œ ๋ถˆ๋Ÿ‰ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ด ๊ธฐ๋ฒ•์ด Graspโ€™D์˜ ์„ฑ๊ณต์— ํ•ต์‹ฌ์ ์ž„์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
    • Coarse-to-fine Smoothing์˜ ์˜ํ–ฅ: coarse-to-fine ํ‰ํ™œํ™”๊ฐ€ ์—†์„ ๊ฒฝ์šฐ(Graspโ€™D w/o coarse-to-fine), ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์œ„๊ฐ€ ์•ฝ 25% ์ฆ๊ฐ€ํ–ˆ์ง€๋งŒ ๋‹ค๋ฅธ ์ง€ํ‘œ์—๋Š” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ •๋Ÿ‰์ ์œผ๋กœ๋Š” ๋ฏธ๋ฏธํ•˜์ง€๋งŒ, ์ •์„ฑ์ ์œผ๋กœ๋Š” ๊ทธ๋žฉ์˜ ๋ฏธ์„ธํ•œ ์ ํ•ฉ์„ฑ(conformance)์— ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค.
    • Leaky Gradient์˜ ํ•„์š”์„ฑ: leaky gradient๊ฐ€ ์—†์„ ๊ฒฝ์šฐ, ํ•ธ๋“œ๊ฐ€ ์ดˆ๊ธฐํ™” ์‹œ ๊ฐ์ฒด์— ์ ‘์ด‰ํ•˜์ง€ ์•Š์œผ๋ฉด ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์—†์–ด ์ตœ์ ํ™”๊ฐ€ ์ •์ฒด๋  ๊ฒƒ์ด๋ฏ€๋กœ, ์ด ๋ณ€ํ˜•์— ๋Œ€ํ•œ ์‹คํ—˜์€ ์ˆ˜ํ–‰๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

๊ฒฐ๋ก  (Conclusions)

Graspโ€™D๋Š” ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜์˜ ๊ทธ๋žฉ ํ•ฉ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ, ๋‹ค์ง€ ๊ทธ๋ฆฌํผ์— ๋Œ€ํ•ด์„œ๋„ ๋Œ€๊ทœ๋ชจ์˜ ํƒ€๋‹นํ•˜๊ณ  ๊ณ ์ ‘์ด‰ ๊ทธ๋žฉ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐฉ์‹์€ ๊ธฐ์กด์˜ ๊ณ ์ „์ ์ธ ๊ทธ๋žฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋ณด๋‹ค ์ •๋Ÿ‰์ ์œผ๋กœ๋‚˜ ์ •์„ฑ์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. PyTorch์™€ ํ˜ธํ™˜๋˜์–ด ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ์— ์‰ฝ๊ฒŒ ํ†ตํ•ฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋น„์ „ ํŒŒ์ดํ”„๋ผ์ธ์˜ ๊ทธ๋žฉ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ง์ ‘์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ”” Ring Review

๐Ÿ”” Ring โ€” An idea that echoes. Grasp the core and its value.

๐Ÿค– โ€œ์†๊ฐ€๋ฝ ๋๋งŒ ์“ฐ์ง€ ๋ง๊ณ , ์†๋ฐ”๋‹ฅ๋„ ์จ!โ€

์—ฌ๋Ÿฌ๋ถ„, ์ปต์„ ์ง‘์–ด๋ณด์„ธ์š”. ์•„๋‹ˆ, ์ •๋ง๋กœ์š”. ์ง€๊ธˆ ์˜†์— ์žˆ๋Š” ์ปต์„ ํ•œ๋ฒˆ ์ง‘์–ด๋ณด์„ธ์š”.

์–ด๋–ป๊ฒŒ ์ง‘์œผ์…จ๋‚˜์š”? ์†๊ฐ€๋ฝ ๋๋งŒ ์‚ด์ง ๋Œ”๋‚˜์š”? ์•„๋‹ˆ์ฃ . ์†๋ฐ”๋‹ฅ๊นŒ์ง€ ๊ฐ์‹ธ ์ฅ์…จ์„ ๊ฒ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ ์ธ๊ฐ„์€ ์ˆ˜์ฒœ ๋…„๊ฐ„ ์ด๋ ‡๊ฒŒ ๋ฌผ๊ฑด์„ ์ง‘์–ด์™”์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ๋กœ๋ด‡ ์†์€์š”? ์—ฌ์ „ํžˆ ์†๊ฐ€๋ฝ ๋๋งŒ ์“ฐ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์™œ ๊ทธ๋Ÿด๊นŒ์š”?

์˜ค๋Š˜ ์†Œ๊ฐœํ•  Graspโ€™D๋Š” ๋ฐ”๋กœ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. Toronto ๋Œ€ํ•™, Vector Institute, NVIDIA, Samsung ์—ฐ๊ตฌ์ง„์ด ECCV 2022์—์„œ ๋ฐœํ‘œํ•œ ์ด ๋…ผ๋ฌธ์€, ๋กœ๋ด‡ ๊ทธ๋ฆฌํ•‘ ์—ฐ๊ตฌ์—์„œ โ€œ์ ‘์ด‰๋ฉด์ โ€์ด๋ผ๋Š” ๊ฐœ๋…์„ ์™„์ „ํžˆ ์ƒˆ๋กญ๊ฒŒ ์ •์˜ํ–ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“Œ ํ•œ ๋ฌธ์žฅ ์š”์•ฝ

โ€œ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์ ‘์ด‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด, ๊ธฐ์กด ๋Œ€๋น„ 4๋ฐฐ ์ด์ƒ ๋„“์€ ์ ‘์ด‰ ๋ฉด์ ์˜ ์•ˆ์ •์ ์ธ ๊ทธ๋ฆฝ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•โ€


๐ŸŽฏ ์™œ ์ด ์—ฐ๊ตฌ๊ฐ€ ์ค‘์š”ํ•œ๊ฐ€?

๊ธฐ์กด ๋ฐฉ์‹์˜ ํ•œ๊ณ„: โ€œ์†๊ฐ€๋ฝ ๋ ๊ทธ๋ฆฝ์˜ ๋น„๊ทนโ€

๋กœ๋ด‡ ์†์œผ๋กœ ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ๋ฌธ์ œ(Grasp Synthesis)๋Š” ์ƒ๊ฐ๋ณด๋‹ค ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด:

  1. ๊ณ ์ฐจ์› ํƒ์ƒ‰ ๊ณต๊ฐ„: ์ธ๊ฐ„ ์† ๋ชจ๋ธ(MANO)์€ 51๊ฐœ์˜ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. Allegro ๋กœ๋ด‡ ์†๋„ 16๊ฐœ ๊ด€์ ˆ์ด ์žˆ์ฃ . ์ด ๋ชจ๋“  ์กฐํ•ฉ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฑด ์‚ฌ์‹ค์ƒ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

  2. ๋‹จ์ˆœํ™”์˜ ํ•จ์ •: ๊ทธ๋ž˜์„œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ํƒ€ํ˜‘์„ ํ•ฉ๋‹ˆ๋‹ค:

    • Eigengrasp: ์† ์ž์„ธ๋ฅผ ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA)์œผ๋กœ ์ €์ฐจ์›ํ™”
    • ์‚ฌ์ „ ์ •์˜๋œ ์ ‘์ด‰์ : โ€œ์†๊ฐ€๋ฝ ๋๋งŒ ์“ฐ์ž!โ€
  3. ๊ฒฐ๊ณผ: ๋ถ€์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๋ถˆ์•ˆ์ •ํ•œ โ€œ์†๊ฐ€๋ฝ ๋ ๊ทธ๋ฆฝโ€๋งŒ ์ƒ์„ฑ๋จ

์•„๋ž˜ ๋น„๊ต๋ฅผ ๋ณด์„ธ์š”:

๊ตฌ๋ถ„ ๊ธฐ์กด ๋ฐฉ์‹ (ObMan/GraspIt!) Graspโ€™D ๋ฐฉ์‹
์ ‘์ด‰ ํŒจํ„ด Fingertip-only contact Full palm + finger wrap
์ ‘์ด‰ ๋ฉด์  ~9 cmยฒ ~43 cmยฒ
๊ทธ๋ฆฝ ์Šคํƒ€์ผ Precision grip Power grip
์•ˆ์ •์„ฑ Low (easily drops) High (secure hold)

ํ•ต์‹ฌ ํ†ต์ฐฐ: โ€œ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ์ด ๋ชจ๋“  ๊ฒƒ์„ ๋ฐ”๊พผ๋‹คโ€

Graspโ€™D์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ์‹ฌํ”Œํ•ฉ๋‹ˆ๋‹ค:

โ€œ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“ค๋ฉด, ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์œผ๋กœ ์ข‹์€ ๊ทธ๋ฆฝ์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.โ€

๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™”(์‹œ๋ฎฌ๋ ˆ์ดํ‹ฐ๋“œ ์–ด๋‹๋ง ๋“ฑ)๋Š” ์ €์ฐจ์›์—์„œ๋งŒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ฒฝ์‚ฌ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๋Š” ๊ณ ์ฐจ์›์—์„œ๋„ ํšจ์œจ์ ์ด์ฃ . ๋ฌธ์ œ๋Š”โ€ฆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๊ทธ ์žฅ๋ฒฝ์„ ๋šซ์—ˆ์Šต๋‹ˆ๋‹ค.


๐Ÿ”ฌ ๊ธฐ์ˆ ์  ๊นŠ์ด ํŒŒํ—ค์น˜๊ธฐ

์ž, ์ด์ œ ์ง„์งœ ์žฌ๋ฏธ์žˆ๋Š” ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค. Graspโ€™D๊ฐ€ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์™œ ๊ธฐ์กด ๋ฐฉ์‹์ด ์‹คํŒจํ–ˆ๋Š”์ง€ ํ•˜๋‚˜์”ฉ ๋œฏ์–ด๋ด…์‹œ๋‹ค.

1. ๋ฌธ์ œ ์ •์˜: ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์ด๋ž€?

์ž…๋ ฅ:

  • ๋ฌผ์ฒด์˜ 3D ํ˜•์ƒ (๋ฉ”์‹œ ๋˜๋Š” SDF)
  • ์† ๋ชจ๋ธ (MANO ์ธ๊ฐ„ ์† ๋˜๋Š” Allegro ๋กœ๋ด‡ ์†)

์ถœ๋ ฅ:

  • ์†์˜ ๊ธฐ๋ณธ ์ž์„ธ (์œ„์น˜ + ํšŒ์ „)
  • ๊ฐ ๊ด€์ ˆ์˜ ๊ฐ๋„

๋ชฉํ‘œ:

  • ๋ฌผ์ฒด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์žก์„ ์ˆ˜ ์žˆ๋Š” ์ž์„ธ ์ฐพ๊ธฐ
  • ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ˜„์‹ค์  (๊ด€ํ†ต ์ตœ์†Œํ™”)
  • ์ ‘์ด‰ ๋ฉด์  ๊ทน๋Œ€ํ™”

2. ์™œ ๊ธฐ์กด ๋ฐฉ์‹์ด ์‹คํŒจํ•˜๋Š”๊ฐ€?

2.1 ํ•ด์„์  ๋ฉ”ํŠธ๋ฆญ(Analytic Metrics)์˜ ํ•œ๊ณ„

GraspIt! ๊ฐ™์€ ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š” Grasp Wrench Space (GWS) ๋ถ„์„์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. Ferrari-Canny ๋ฉ”ํŠธ๋ฆญ(ฮต-metric)์ด ๋Œ€ํ‘œ์ ์ด์ฃ :

\epsilon = \min_{w \in \partial GWS} \|w\|

์ด๊ฑด โ€œ๊ทธ๋ฆฝ์„ ๊นจ๋Š” ๋ฐ ํ•„์š”ํ•œ ์ตœ์†Œ ํž˜โ€์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์ œ๋Š”:

  1. ์‚ฌ์ „์— ์ ‘์ด‰์ ์„ ์ •ํ•ด์•ผ ํ•จ: ์ˆ˜๋™์œผ๋กœ 45๊ฐœ ์ •๋„์˜ ์ ‘์ด‰ ํ›„๋ณด์ ์„ ๋ผ๋ฒจ๋ง
  2. ๋งˆ์ฐฐ ์—†์Œ ๊ฐ€์ •: ํ˜„์‹ค๊ณผ ๋™๋–จ์–ด์ง„ ๋‹จ์ˆœํ™”
  3. ํž˜์˜ ํฌ๊ธฐ ๊ท ์ผ ๊ฐ€์ •: ๋ชจ๋“  ์ ‘์ด‰์ ์—์„œ ๊ฐ™์€ ํž˜

2.2 ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™”์˜ ์ฐจ์›์˜ ์ €์ฃผ

์‹œ๋ฎฌ๋ ˆ์ดํ‹ฐ๋“œ ์–ด๋‹๋ง์ด๋‚˜ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐ™์€ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™”๋Š”:

  • 2-jaw ๊ทธ๋ฆฌํผ (6 DoF): OK โœ“
  • ๋‹ค์ค‘ ์†๊ฐ€๋ฝ ์† (16+ DoF): ๐Ÿ’€

์ฐจ์›์ด ๋†’์•„์ง€๋ฉด ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ์ง€์ˆ˜์ ์œผ๋กœ ํญ๋ฐœํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ Eigengrasp๋กœ ์ฐจ์›์„ ์ค„์ด๋Š”๋ฐโ€ฆ ์ด๋Ÿฌ๋ฉด power grasp ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทธ๋ฆฝ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

3. Graspโ€™D์˜ ํ•ด๋ฒ•: ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋ฒ•

Graspโ€™D ํŒ€์€ โ€œ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜โ€์„ ๋งŒ๋“ค๋ ค๋‹ค ์„ธ ๊ฐ€์ง€ ๋ฒฝ์— ๋ถ€๋”ชํ˜”๊ณ , ๊ฐ๊ฐ์„ ์ฐฝ์˜์ ์œผ๋กœ ํ•ด๊ฒฐํ–ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿงฑ Challenge 1: ๋ถˆ์—ฐ์†์ ์ธ ํ‘œ๋ฉด ๊ธฐํ•˜ํ•™

๋ฌธ์ œ: ์ •์œก๋ฉด์ฒด์˜ ๋ชจ์„œ๋ฆฌ์—์„œ ์ ‘์ด‰ ๋ฒ•์„ ์ด ๋ถˆ์—ฐ์†์ ์œผ๋กœ ์ ํ”„ํ•ฉ๋‹ˆ๋‹ค. ๋ฏธ๋ถ„ ๋ถˆ๊ฐ€!

graph LR
    subgraph "Surface Normal Discontinuity at Edge"
        A["Face A<br/>Normal: โ†‘"] --> E["Edge<br/>(Discontinuity)"]
        E --> B["Face B<br/>Normal: โ†’"]
    end

    style E fill:#ff6b6b,stroke:#333,stroke-width:2px

๋ฌธ์ œ์ : ๋ชจ์„œ๋ฆฌ(Edge)์—์„œ ๋ฒ•์„  ๋ฒกํ„ฐ๊ฐ€ ๋ถˆ์—ฐ์†์ ์œผ๋กœ ์ ํ”„ โ†’ ๋ฏธ๋ถ„ ๋ถˆ๊ฐ€๋Šฅ!

ํ•ด๊ฒฐ: Coarse-to-Fine SDF Smoothing

SDF(Signed Distance Function)๋ฅผ ์‚ฌ์šฉํ•˜๋˜, ์ฒ˜์Œ์—” ๋ฌผ์ฒด๋ฅผ โ€œ๋ถ€ํ’€๋ ค์„œโ€ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค:

\text{Surface}_r = \{x | \phi(x) = r\}, \quad r: 10\text{cm} \rightarrow 0

์ดˆ๊ธฐ์—๋Š” ๋ฌผ์ฒด๊ฐ€ ๋งˆ์น˜ ๋‘๊บผ์šด ์ ค๋ฆฌ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค. ๋ชจ์„œ๋ฆฌ๊ฐ€ ๋‘ฅ๊ธ€์ฃ . ์ตœ์ ํ™”๊ฐ€ ์ง„ํ–‰๋˜๋ฉฐ ์ ์  ์›๋ž˜ ํ˜•์ƒ์œผ๋กœ ๋Œ์•„๊ฐ‘๋‹ˆ๋‹ค. ์ด๋Ÿฌ๋ฉด:

  • ์ดˆ๋ฐ˜: ๋Œ€๋žต์ ์ธ ๊ทธ๋ฆฝ ์œ„์น˜ ํƒ์ƒ‰ (๋ถ€๋“œ๋Ÿฌ์šด ํ‘œ๋ฉด์—์„œ)
  • ํ›„๋ฐ˜: ์„ธ๋ฐ€ํ•œ ํ‘œ๋ฉด ํ˜•์ƒ์— ๋งž์ถค

๐Ÿงฑ Challenge 2: ์ ‘์ด‰ ํฌ์†Œ์„ฑ (Contact Sparsity)

๋ฌธ์ œ: ์†์ด ๋ฌผ์ฒด์— ๋‹ฟ์ง€ ์•Š์œผ๋ฉด ์ ‘์ด‰๋ ฅ์ด 0์ด๊ณ , ๋”ฐ๋ผ์„œ ๊ทธ๋ž˜๋””์–ธํŠธ๋„ 0์ž…๋‹ˆ๋‹ค. ์†์„ ๋ฌผ์ฒด ์ชฝ์œผ๋กœ ์›€์ง์ผ ์‹ ํ˜ธ๊ฐ€ ์—†์–ด์š”!

graph LR
    H["Hand<br/>(not touching)"] -.->|"Gap: no contact"| O["Object"]

    subgraph "Problem"
        F["Contact Force = 0"]
        G["โˆ‚f/โˆ‚q = 0"]
        D["Dead Gradient!"]
    end

    F --> G --> D

    style D fill:#ff6b6b,stroke:#333,stroke-width:2px

๋ฌธ์ œ์ : ์ ‘์ด‰์ด ์—†์œผ๋ฉด ํž˜๋„ 0, ๊ทธ๋ž˜๋””์–ธํŠธ๋„ 0 โ†’ ์ตœ์ ํ™” ๋ฐฉํ–ฅ์„ ์•Œ ์ˆ˜ ์—†์Œ!

ํ•ด๊ฒฐ: Leaky Gradient

LeakyReLU์—์„œ ์˜๊ฐ์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค! ์ ‘์ด‰ํ•˜์ง€ ์•Š์•„๋„ ์•ฝ๊ฐ„์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ํ˜๋ ค๋ณด๋ƒ…๋‹ˆ๋‹ค:

\frac{\partial \|f_n\|}{\partial q} = \begin{cases} k_n \frac{\partial \phi}{\partial q} & \text{if } \phi(x) < 0 \text{ (์นจํˆฌ)} \\ \alpha k_n \frac{\partial \phi}{\partial q} & \text{otherwise (๋น„์ ‘์ด‰)} \end{cases}

์—ฌ๊ธฐ์„œ ฮฑ = 0.1์ž…๋‹ˆ๋‹ค. ๋น„์ ‘์ด‰ ์ƒํƒœ์—์„œ๋„ 10%์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์ „๋‹ฌ๋˜์–ด, ์†์ด ๋ฌผ์ฒด๋ฅผ ํ–ฅํ•ด ์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด๊ฑด ๋”ฅ๋Ÿฌ๋‹์˜ โ€œdying ReLUโ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ LeakyReLU์™€ ์ •ํ™•ํžˆ ๊ฐ™์€ ๋ฐœ์ƒ์ž…๋‹ˆ๋‹ค!

๐Ÿงฑ Challenge 3: ํ—˜์ค€ํ•œ ์ตœ์ ํ™” ์ง€ํ˜•

๋ฌธ์ œ: ์ ‘์ด‰ ์ƒํƒœ์—์„œ ์† ์ž์„ธ์˜ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ ์ ‘์ด‰๋ ฅ์˜ ํฐ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ์‚ฐ๋“ฑ์„ฑ์ด์—์„œ ๋กœํ”„ ์—†์ด ๊ฑท๋Š” ๋А๋‚Œ์ด์ฃ .

ํ•ด๊ฒฐ: Contact-Invariant Optimization (CIO) ์˜๊ฐ์˜ ๋ฌธ์ œ ์™„ํ™”

๊ธฐ์กด ์ ‘๊ทผ:

โ€œ์† ์ž์„ธ q๋ฅผ ์ตœ์ ํ™”ํ•ด์„œ ๋ฌผ์ฒด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์žก์•„๋ผโ€

Graspโ€™D ์ ‘๊ทผ:

  1. โ€œ์–ด๋–ค ํž˜ fฬ‚_c๊ฐ€ ๋ฌผ์ฒด๋ฅผ ์•ˆ์ •ํ™”ํ•˜๋Š”์ง€ ์ฐพ์•„๋ผโ€ (Task Loss)
  2. โ€œ๊ทธ ํž˜์„ ์‹ค์ œ๋กœ ์ œ๊ณตํ•˜๋Š” ์† ์ž์„ธ q๋ฅผ ์ฐพ์•„๋ผโ€ (Physics Loss)

์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด:

\mathcal{L}_{task}(\hat{f}_c) = \|u_{obj}^{(T)}\| \quad \text{(๋ชฉํ‘œ ํž˜์ด ๋ฌผ์ฒด๋ฅผ ์ •์ง€์‹œํ‚ค๋‚˜?)}

\mathcal{L}_{phys}(q_h, \hat{f}_c) = \|f_c(q_h) - \hat{f}_c\| \quad \text{(์† ์ž์„ธ๊ฐ€ ๋ชฉํ‘œ ํž˜์„ ์ œ๊ณตํ•˜๋‚˜?)}

๋ฌผ๋ฆฌ ๋ฒ•์น™ ์œ„๋ฐ˜์„ โ€œ์ œ์•ฝโ€์ด ์•„๋‹Œ โ€œ๋น„์šฉโ€์œผ๋กœ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌ๋ฉด ์ตœ์ ํ™” ์ง€ํ˜•์ด ํ›จ์”ฌ ์™„๋งŒํ•ด์ง‘๋‹ˆ๋‹ค!

4. ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜

์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์„ ์ •๋ฆฌํ•˜๋ฉด:

flowchart TB
    subgraph Input["๐Ÿ“ฅ Input Stage"]
        M["Object Mesh"] --> SDF["SDF Conversion<br/>(256ยณ grid)"]
        SDF --> CSDF["Coarse SDF<br/>(r = 10cm padding)"]
        Hand["Hand Model<br/>(MANO/Allegro)"]
    end

    subgraph Init["๐ŸŽฏ Initialization"]
        AP["Sample approach point<br/>on object surface"]
        OR["Set hand orientation<br/>(opposite to surface normal)"]
        DIST["Set hand distance<br/>(10cm from approach point)"]
        AP --> OR --> DIST
    end

    subgraph Opt["๐Ÿ”„ Optimization Loop (7000 steps)"]
        R["1. Decrease r<br/>(linear schedule, 0 at step 5000)"]
        SIM["2. Run 3 simulations<br/>with different initial velocities:<br/>(0,0,0), (ยฑ0.01,ยฑ0.01,ยฑ0.01) m/s"]
        LOSS["3. Compute Losses:<br/>โ€ข L_task: stabilization<br/>โ€ข L_phys: force matching<br/>โ€ข L_range: joint centering<br/>โ€ข L_limit: joint limits<br/>โ€ข L_inter: self-penetration"]
        UPDATE["4. Adamax update<br/>โ€ข Hand pose q_h<br/>โ€ข Target force fฬ‚_c"]
        R --> SIM --> LOSS --> UPDATE
        UPDATE -.->|"repeat"| R
    end

    subgraph Output["๐Ÿ“ค Output"]
        GRASP["Optimized Grasp Pose"]
    end

    Input --> Init --> Opt --> Output

    style Opt fill:#e8f5e9,stroke:#2e7d32
    style GRASP fill:#bbdefb,stroke:#1976d2

5. ์ ‘์ด‰๋ ฅ ๋ชจ๋ธ๋ง: ๋ฌผ๋ฆฌํ•™์˜ ์•„๋ฆ„๋‹ค์›€

Graspโ€™D์˜ ์ ‘์ด‰๋ ฅ ๊ณ„์‚ฐ์€ ๋‹จ์ˆœํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค:

๋ฒ•์„ ๋ ฅ (Normal Force):

f_n = k_n \min(\phi(x), 0) \nabla\phi(x)

  • \phi(x): SDF ๊ฐ’ (์Œ์ˆ˜๋ฉด ์นจํˆฌ ์ƒํƒœ)
  • \nabla\phi(x): ํ‘œ๋ฉด ๋ฒ•์„ 
  • k_n: ๋ฒ•์„  ๊ฐ•์„ฑ ๊ณ„์ˆ˜ (1ร—10โถ)

๋งˆ์ฐฐ๋ ฅ (Friction Force):

f_t = -\min(k_f \|v_t\|, \mu \|f_n\|) \hat{v}_t

Coulomb ๋งˆ์ฐฐ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค:

  • v_t: ์ ‘์„  ๋ฐฉํ–ฅ ์ƒ๋Œ€ ์†๋„
  • \mu: ๋งˆ์ฐฐ ๊ณ„์ˆ˜ (0.8)
  • k_f: ๋งˆ์ฐฐ ๊ฐ•์„ฑ ๊ณ„์ˆ˜ (1ร—10โธ)

์ด ๋ชจ๋“  ์—ฐ์‚ฐ์ด ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. PyTorch autograd์™€ ์™„๋ฒฝ ํ˜ธํ™˜!


๐Ÿ“Š ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„

์ •๋Ÿ‰์  ๋น„๊ต: ObMan vs Graspโ€™D

๋ฉ”ํŠธ๋ฆญ ObMan (Top 2) Graspโ€™D (Top 2) ๊ฐœ์„ ์œจ
์ ‘์ด‰ ๋ฉด์  (cmยฒ) 9.4 43.0 4.6๋ฐฐ
์นจํˆฌ ์ฒด์  (cmยณ) 1.28 5.70 -
CA/IV ๋น„์œจ 7.37 7.55 ์œ ์ง€
ฮต ๋ฉ”ํŠธ๋ฆญ 0.470 0.501 6.6%
Volume ๋ฉ”ํŠธ๋ฆญ 13.6 14.4 5.9%
Sim. Disp. (cm) 1.95 0.59 3.3๋ฐฐ

ํ•ต์‹ฌ ํฌ์ธํŠธ:

  1. ์ ‘์ด‰ ๋ฉด์  4.6๋ฐฐ ์ฆ๊ฐ€: ์†๋ ๊ทธ๋ฆฝ โ†’ ํŒŒ์›Œ ๊ทธ๋ฆฝ
  2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์œ„ 3.3๋ฐฐ ๊ฐ์†Œ: ํ›จ์”ฌ ์•ˆ์ •์ ์ธ ๊ทธ๋ฆฝ
  3. CA/IV ๋น„์œจ ์œ ์ง€: ์ ‘์ด‰์ด ๋Š˜์—ˆ์ง€๋งŒ ์นจํˆฌ ๋น„์œจ์€ ๋น„์Šท

์งˆ์  ๋น„๊ต: ๋ˆˆ์œผ๋กœ ๋ณด๋Š” ์ฐจ์ด

graph TB
    subgraph ObMan["ObMan Grasp (GraspIt!)"]
        direction TB
        O1["๐Ÿ‘† Fingertip-only contact"]
        O2["โŒ Unstable grip"]
        O3["โŒ Unnatural appearance"]
        O4["Contact: ~9 cmยฒ"]
    end

    subgraph GraspD["Grasp'D Grasp"]
        direction TB
        G1["๐Ÿคฒ Full palm + finger wrap"]
        G2["โœ… Highly stable grip"]
        G3["โœ… Human-like appearance"]
        G4["Contact: ~43 cmยฒ"]
    end

    style ObMan fill:#ffcdd2,stroke:#c62828
    style GraspD fill:#c8e6c9,stroke:#2e7d32

์‹œ๊ฐ์  ์ฐจ์ด: ObMan์€ ์†๊ฐ€๋ฝ ๋์œผ๋กœ๋งŒ ์‚ด์ง ์ง‘๋Š” ๋ฐ˜๋ฉด, Graspโ€™D๋Š” ์†๋ฐ”๋‹ฅ๊นŒ์ง€ ๊ฐ์‹ธ๋Š” ํŒŒ์›Œ ๊ทธ๋ฆฝ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

RGB-D ์žฌ๊ตฌ์„ฑ์—์„œ์˜ ๊ฒ€์ฆ

์‹ค์ œ ์‘์šฉ์„ ๊ณ ๋ คํ•ด YCB ๋ฐ์ดํ„ฐ์…‹์˜ RGB-D ์ด๋ฏธ์ง€์—์„œ ๋ฌผ์ฒด๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๊ณ  ๊ทธ๋ฆฝ์„ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค:

  • ์ž…๋ ฅ: 3๊ฐœ ์นด๋ฉ”๋ผ ร— 5๊ฐœ ๊ฐ๋„ = 15์žฅ RGB-D ์ด๋ฏธ์ง€ (์ „์ฒด์˜ 2.5%)
  • ๊ณผ์ •: Poisson ํ‘œ๋ฉด ์žฌ๊ตฌ์„ฑ โ†’ SDF ๋ณ€ํ™˜ โ†’ Graspโ€™D
  • ๊ฒฐ๊ณผ: ๋ถˆ์™„์ „ํ•œ ์žฌ๊ตฌ์„ฑ์—์„œ๋„ ํ•ฉ๋ฆฌ์ ์ธ ๊ทธ๋ฆฝ ์ƒ์„ฑ

์ด๋Š” ์‹ค์‹œ๊ฐ„ ๊ทธ๋ฆฝ ์˜ˆ์ธก์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํ˜„์žฌ๋Š” ๊ทธ๋ฆฝ๋‹น ~5๋ถ„์ด ๊ฑธ๋ฆฌ์ง€๋งŒ, ํ•˜๋“œ์›จ์–ด ๋ฐœ์ „๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™”๋กœ ์‹ค์‹œ๊ฐ„ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

Ablation Study: ๊ฐ ๊ธฐ๋ฒ•์˜ ๊ธฐ์—ฌ๋„

๋ณ€ํ˜• CA SD ๋น„๊ณ 
Full Graspโ€™D 42.6 0.41 -
w/o Coarse-to-Fine 43.2 0.55 SD 34% ์ฆ๊ฐ€
w/o Problem Relaxation 6.1 3.82 ์™„์ „ ์‹คํŒจ

ํ•ต์‹ฌ ๋ฐœ๊ฒฌ: - Problem Relaxation์ด ๊ฐ€์žฅ ์ค‘์š” (์—†์œผ๋ฉด ์ž‘๋™ ์•ˆ ํ•จ) - Coarse-to-Fine์€ ์•ˆ์ •์„ฑ์— ๊ธฐ์—ฌ (34% SD ๊ฐœ์„ ) - Leaky Gradient ์—†์ด๋Š” ํ…Œ์ŠคํŠธ ๋ถˆ๊ฐ€ (์ดˆ๊ธฐํ™”์—์„œ ์ ‘์ด‰ ์—†์œผ๋ฉด ์ง„ํ–‰ ๋ถˆ๊ฐ€)


๐ŸŽ“ ์ด๋ก ์  ํ†ต์ฐฐ: ์™œ ์ด๊ฒŒ ์ž‘๋™ํ•˜๋Š”๊ฐ€?

๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ์ฒ ํ•™

์ „ํ†ต์ ์ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ โ€œ์ •ํ™•์„ฑโ€์— ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค. ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ์ •๋ฐ€ํ•˜๊ฒŒ ํ’€์ฃ . ํ•˜์ง€๋งŒ Graspโ€™D๋Š” ๋‹ค๋ฅธ ์งˆ๋ฌธ์„ ํ•ฉ๋‹ˆ๋‹ค:

โ€œ์ •ํ™•ํ•˜์ง„ ์•Š์•„๋„ ๋˜๋‹ˆ๊นŒ, ์˜ฌ๋ฐ”๋ฅธ ๋ฐฉํ–ฅ์„ ๊ฐ€๋ฆฌํ‚ค๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ค„ ์ˆ˜ ์žˆ๋‚˜?โ€

์ด๊ฑด ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๋ฐฐ์šด ๊ตํ›ˆ์ž…๋‹ˆ๋‹ค. SGD๋Š” ์ •ํ™•ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ์•„๋‹ˆ๋ผ โ€œ๋ฐฉํ–ฅ๋งŒ ๋Œ€์ถฉ ๋งž๋Š”โ€ ๊ทธ๋ž˜๋””์–ธํŠธ๋กœ๋„ ์ˆ˜๋ ดํ•ฉ๋‹ˆ๋‹ค. Graspโ€™D์˜ leaky gradient๋„ ๊ฐ™์€ ์ฒ ํ•™์ž…๋‹ˆ๋‹ค.

Contact-Invariant Optimization์˜ ์žฌ๋ฐœ๊ฒฌ

CIO๋Š” ์›๋ž˜ ๋กœ๋ด‡ ๋ชจ์…˜ ํ”Œ๋ž˜๋‹์„ ์œ„ํ•ด ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š”:

  1. ์ ‘์ด‰ ํŒจํ„ด์„ ๋ฏธ๋ฆฌ ๊ณ ์ •ํ•˜์ง€ ์•Š๋Š”๋‹ค
  2. ๋ฌผ๋ฆฌ ๋ฒ•์น™ ์œ„๋ฐ˜์„ ํ—ˆ์šฉํ•˜๋˜, ๋น„์šฉ์œผ๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค
  3. ๋‘ ๊ฐ€์ง€ ๊ด€์ ์œผ๋กœ ๋ฌธ์ œ๋ฅผ ๋ถ„ํ•ดํ•œ๋‹ค:
    • ์–ด๋–ค ํž˜์ด ํ•„์š”ํ•œ๊ฐ€? (๊ณ„ํš)
    • ๊ทธ ํž˜์„ ์–ด๋–ป๊ฒŒ ์ƒ์„ฑํ•˜๋‚˜? (์‹คํ˜„)

Graspโ€™D๋Š” ์ด ์ฒ ํ•™์„ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์— ์ ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋„๊ตฌ ๋•๋ถ„์—, ์ด ์•„์ด๋””์–ด๊ฐ€ ์‹ค์ œ๋กœ ์ž‘๋™ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

SDF์˜ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ

์™œ ๋ฉ”์‹œ ๋Œ€์‹  SDF๋ฅผ ์“ธ๊นŒ์š”?

ํŠน์„ฑ Mesh-based Contact SDF-based Contact
ํ‘œํ˜„ ๋ฐฉ์‹ Discrete triangle boundaries Continuous distance field
๊ฑฐ๋ฆฌ (d) Discontinuous at edges Continuous everywhere
๋ฒ•์„  (n) Jumps between faces Smooth (almost everywhere)
โˆ‚d/โˆ‚x Hard to define Easy: โˆ‚ฯ•/โˆ‚x = โˆ‡ฯ•
๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ โŒ Problematic โœ… Well-defined

SDF์˜ ๊ทธ๋ž˜๋””์–ธํŠธ โˆ‡ฯ•๋Š” ๋‹จ์œ„ ๋ฒกํ„ฐ์ด๊ณ , ์ด๋Š” ๊ณง ํ‘œ๋ฉด ๋ฒ•์„ ์ž…๋‹ˆ๋‹ค. ์นจํˆฌ ๊นŠ์ด d์™€ ๋ฒ•์„  n ๋ชจ๋‘ ์œ„์น˜์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค!


๐Ÿ”ฎ ๋ฏธ๋ž˜ ์ „๋ง ๋ฐ ํ•œ๊ณ„

ํ˜„์žฌ์˜ ํ•œ๊ณ„

  1. ์†๋„: ๊ทธ๋ฆฝ๋‹น ~5๋ถ„ (RTX 2070). ์‹ค์‹œ๊ฐ„ ์ ์šฉ ์–ด๋ ค์›€
  2. ๋กœ์ปฌ ์ตœ์†Œ๊ฐ’: ์ดˆ๊ธฐํ™”์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์ง
  3. ๋‹จ์ผ ๋ฌผ์ฒด ๊ฐ€์ •: ํด๋Ÿฌํ„ฐ ํ™˜๊ฒฝ ๋ฏธ์ง€์›
  4. ์ •์  ๊ทธ๋ฆฝ๋งŒ: ๋™์  ์กฐ์ž‘(in-hand manipulation) ๋ฏธ์ง€์›

๋ฐœ์ „ ๋ฐฉํ–ฅ

  1. Fast-Graspโ€™D (ICRA 2023): ๊ฐ™์€ ํŒ€์ด 10๋ฐฐ ๋น ๋ฅธ ๋ฒ„์ „ ๋ฐœํ‘œ. Graspโ€™D-1M ๋ฐ์ดํ„ฐ์…‹ ์ƒ์„ฑ
  2. ํ•™์Šต ๊ธฐ๋ฐ˜ ์ดˆ๊ธฐํ™”: ์‹ ๊ฒฝ๋ง์ด ์ข‹์€ ์ดˆ๊ธฐ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋ฉด ์ตœ์ ํ™” ์ˆ˜๋ ด ๊ฐ€์†
  3. ๋ณ‘๋ ฌํ™”: GPU ๋ณ‘๋ ฌํ™”๋กœ ๋‹ค์ค‘ ๊ทธ๋ฆฝ ๋™์‹œ ํƒ์ƒ‰
  4. ์‹ค์‹œ๊ฐ„ํ™”: ์ตœ์ ํ™” ๋Œ€์‹  ์‹ ๊ฒฝ๋ง ์˜ˆ์ธก + ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฏธ์„ธ ์กฐ์ •

๋” ๋„“์€ ๋งฅ๋ฝ: ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๋ถ€์ƒ

Graspโ€™D๋Š” ๋” ํฐ ํŠธ๋ Œ๋“œ์˜ ์ผ๋ถ€์ž…๋‹ˆ๋‹ค:

  • Brax: Google์˜ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ๋ฌผ๋ฆฌ ์—”์ง„
  • DiffTaichi: SIGGRAPH 2020
  • Isaac Gym: NVIDIA์˜ ๋ณ‘๋ ฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ
  • Nimble Physics: ํ•ด์„์  ๊ทธ๋ž˜๋””์–ธํŠธ ๊ณ„์‚ฐ

๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๋กœ๋ด‡๊ณตํ•™์˜ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ž…๋‹ˆ๋‹ค. Graspโ€™D๋Š” ๊ทธ ๊ฐ€๋Šฅ์„ฑ์„ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์—์„œ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.


๐Ÿ› ๏ธ ์‹ค๋ฌด์ž๋ฅผ ์œ„ํ•œ ํ•ต์‹ฌ ํ…Œ์ดํฌ์–ด์›จ์ด

์ด ๋…ผ๋ฌธ์„ ๋‹น์žฅ ์ ์šฉํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:

  1. ์ฝ”๋“œ ๊ณต๊ฐœ: github.com/dylanturpin/graspd
  2. PyTorch ํ˜ธํ™˜: ๊ธฐ์กด ํŒŒ์ดํ”„๋ผ์ธ์— ์‰ฝ๊ฒŒ ํ†ตํ•ฉ
  3. ๋ฒ”์šฉ ์† ๋ชจ๋ธ ์ง€์›: MANO (์ธ๊ฐ„), Allegro (๋กœ๋ด‡) ๋ชจ๋‘ OK

๊ตฌํ˜„ ํŒ:

# ํ•ต์‹ฌ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ (๋…ผ๋ฌธ ๊ธฐ์ค€)
config = {
    'normal_stiffness': 1e6,      # k_n
    'friction_stiffness': 1e8,    # k_f
    'friction_coeff': 0.8,        # ฮผ
    'leaky_alpha': 0.1,           # ๋น„์ ‘์ด‰ ๊ทธ๋ž˜๋””์–ธํŠธ ๋น„์œจ
    'smoothing_radius': 0.1,      # ์ดˆ๊ธฐ SDF ํŒจ๋”ฉ (๋ฏธํ„ฐ)
    'smoothing_steps': 5000,      # 0๊นŒ์ง€ ์„ ํ˜• ๊ฐ์†Œ
    'total_steps': 7000,
    'optimizer': 'Adamax',
    'lr_pose': 3e-3,
    'lr_force': 1e-2,
}

์—ฐ๊ตฌ ํ™•์žฅ ์•„์ด๋””์–ด:

  1. RL๊ณผ ๊ฒฐํ•ฉ: ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ โ†’ policy gradient ๊ฐœ์„ 
  2. ์ด‰๊ฐ ์„ผ์„œ ํ†ตํ•ฉ: ์ ‘์ด‰๋ ฅ ํ”ผ๋“œ๋ฐฑ์œผ๋กœ closed-loop ์ œ์–ด
  3. Sim-to-Real: ํ•ฉ์„ฑ ๊ทธ๋ฆฝ์œผ๋กœ ์‹ค์ œ ๋กœ๋ด‡ ํ•™์Šต
  4. ๋ฉ€ํ‹ฐ ์†๊ฐ€๋ฝ ํ˜‘์กฐ: ์–‘์† ์กฐ์ž‘์œผ๋กœ ํ™•์žฅ

๐Ÿ“š ๊ด€๋ จ ์—ฐ๊ตฌ ๋งฅ๋ฝ

์ด ๋…ผ๋ฌธ์ด ์ธ์šฉํ•˜๋Š” ํ•ต์‹ฌ ๋…ผ๋ฌธ๋“ค:

๋…ผ๋ฌธ ๊ธฐ์—ฌ Graspโ€™D์™€์˜ ๊ด€๊ณ„
GraspIt! (Miller & Allen, 2004) ํ•ด์„์  ๊ทธ๋ฆฝ ํ•ฉ์„ฑ ๋น„๊ต ๋Œ€์ƒ (baseline)
ObMan (Hasson et al., 2019) ์†-๋ฌผ์ฒด ํฌ์ฆˆ ์ถ”์ • ๋ฐ์ดํ„ฐ์…‹ ๋น„๊ต ๋Œ€์ƒ (baseline)
Contact-Invariant Optimization (Mordatch et al., 2012) CIO ํ”„๋ ˆ์ž„์›Œํฌ ํ•ต์‹ฌ ์˜๊ฐ
MANO (Romero et al., 2017) ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ์ธ๊ฐ„ ์† ๋ชจ๋ธ ์† ๋ชจ๋ธ๋กœ ์‚ฌ์šฉ

์ด ๋…ผ๋ฌธ์„ ์ธ์šฉํ•œ ํ›„์† ์—ฐ๊ตฌ๋“ค:

๋…ผ๋ฌธ ๊ธฐ์—ฌ
Fast-Graspโ€™D (ICRA 2023) 10๋ฐฐ ๋น ๋ฅธ ๋ฒ„์ „ + 1M ๋ฐ์ดํ„ฐ์…‹
DexGraspNet (CVPR 2023) ๋Œ€๊ทœ๋ชจ ๋ฑ์Šคํ„ฐ๋Ÿฌ์Šค ๊ทธ๋ฆฝ ๋ฐ์ดํ„ฐ์…‹
UniDexGrasp (CVPR 2023) ๋ฒ”์šฉ ๋ฑ์Šคํ„ฐ๋Ÿฌ์Šค ๊ทธ๋ฆฝ ์ •์ฑ…

๐ŸŽฌ ๊ฒฐ๋ก : ๋‹จ์ˆœํ•จ์˜ ์Šน๋ฆฌ

Graspโ€™D์˜ ์ง„์ •ํ•œ ์•„๋ฆ„๋‹ค์›€์€ ๊ธฐ์กด ์•„์ด๋””์–ด๋“ค์˜ ์ฐฝ์˜์ ์ธ ์กฐํ•ฉ์— ์žˆ์Šต๋‹ˆ๋‹ค:

  • SDF ๊ธฐ๋ฐ˜ ์ ‘์ด‰ (์ƒˆ๋กœ์šด ๊ฑด ์•„๋‹˜)
  • ๊ฒฝ์‚ฌ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” (์ƒˆ๋กœ์šด ๊ฑด ์•„๋‹˜)
  • Leaky gradient (๋”ฅ๋Ÿฌ๋‹์—์„œ ๋นŒ๋ ค์˜ด)
  • CIO ์Šคํƒ€์ผ ์™„ํ™” (๋ชจ์…˜ ํ”Œ๋ž˜๋‹์—์„œ ๋นŒ๋ ค์˜ด)

๊ฐ๊ฐ์€ ์•Œ๋ ค์ง„ ๊ธฐ๋ฒ•์ด์ง€๋งŒ, ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์ด๋ผ๋Š” ๋ฌธ์ œ์— ๋งž๊ฒŒ ์กฐํ•ฉํ•˜๊ณ  ํŠœ๋‹ํ•œ ๊ฒƒ์ด ์ด ๋…ผ๋ฌธ์˜ ๊ธฐ์—ฌ์ž…๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ณผ๋Š” ๋†€๋ž์Šต๋‹ˆ๋‹ค: 4๋ฐฐ ๋„“์€ ์ ‘์ด‰ ๋ฉด์ , 3๋ฐฐ ๋†’์€ ์•ˆ์ •์„ฑ.

์ด๊ฒƒ์ด ์ข‹์€ ์—ฐ๊ตฌ์˜ ๋ณธ์งˆ์ž…๋‹ˆ๋‹ค. ๋ณต์žกํ•œ ์ƒˆ ๊ธฐ๋ฒ•์„ ๋ฐœ๋ช…ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ธฐ์กด ๋„๊ตฌ๋“ค์„ ๋ฌธ์ œ์— ๋งž๊ฒŒ ์žฌ์กฐํ•ฉํ•˜๋Š” ๊ฒƒ. ๋‰ดํ„ด์ด โ€œ๊ฑฐ์ธ์˜ ์–ด๊นจ ์œ„์— ์„œ ์žˆ๋‹คโ€๊ณ  ํ–ˆ๋“ฏ์ด, Graspโ€™D๋Š” ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ๋ฌผ๋ฆฌํ•™, ๋”ฅ๋Ÿฌ๋‹, ์ตœ์ ํ™” ์ด๋ก ์ด๋ผ๋Š” ๊ฑฐ์ธ๋“ค์˜ ์–ด๊นจ ์œ„์— ์„œ์„œ, ๋กœ๋ด‡ ๊ทธ๋ฆฌํ•‘์˜ ์ƒˆ ์ง€ํ‰์„ ์—ด์—ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“– ์ฐธ๊ณ ๋ฌธํ—Œ

  1. Turpin, D., et al. โ€œGraspโ€™D: Differentiable Contact-rich Grasp Synthesis for Multi-fingered Hands.โ€ ECCV 2022.
  2. Miller, A. T., & Allen, P. K. โ€œGraspit! A versatile simulator for robotic grasping.โ€ IEEE Robotics & Automation Magazine, 2004.
  3. Hasson, Y., et al. โ€œLearning joint reconstruction of hands and manipulated objects.โ€ CVPR 2019.
  4. Mordatch, I., et al. โ€œContact-invariant optimization for hand manipulation.โ€ Eurographics/SIGGRAPH Symposium on Computer Animation, 2012.
  5. Romero, J., et al. โ€œEmbodied hands: Modeling and capturing hands and bodies together.โ€ SIGGRAPH Asia, 2017.

โ›๏ธ Dig Review

โ›๏ธ Dig โ€” Go deep, uncover the layers. Dive into technical detail.

๋ฌธ์ œ ์„ค์ • ๋ฐ ๊ธฐ์กด ์ ‘๊ทผ๋ฒ•์˜ ํ•œ๊ณ„

๋กœ๋ด‡์ด๋‚˜ ๊ฐ€์ƒ ์ธ๊ฐ„์˜ ๋‹ค์ค‘ ์†๊ฐ€๋ฝ ํŒŒ์ง€(grasp)๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์€ ์ผ์ƒ์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด๋ฅผ ์‰ฝ๊ฒŒ ์ฅ์ง€๋งŒ, ์ด๋Š” ์‹œ๊ฐ ์ •๋ณด ์ฒ˜๋ฆฌ์™€ ์†์˜ ์ •๊ตํ•œ ์›€์ง์ž„์ด ๊ฒฐํ•ฉ๋œ ๋ณต์žกํ•œ ์ธ์ง€-์šด๋™ ์ œ์–ด ์‹œ์Šคํ…œ ๋•๋ถ„์ž…๋‹ˆ๋‹ค. ๊ธฐ๊ณ„์—๊ฒŒ ์ด๋Ÿฌํ•œ ๋Šฅ๋ ฅ์„ ์ฃผ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ(grasp synthesis) ์—ฐ๊ตฌ๊ฐ€ ๋ฐœ์ „ํ•ด์™”์Šต๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ์€ ๋ฌผ์ฒด์˜ ์™„์ „ํ•œ ๊ธฐํ•˜ํ•™ ์ •๋ณด(์˜ˆ: ์‚ผ์ฐจ์› ๋ฉ”์‰ฌ)๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉฐ, ๊ทธ๋ฆฝ ํ’ˆ์งˆ ์ง€ํ‘œ(grasp quality metric)๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ ์†์˜ ์ž์„ธ๋ฅผ ์ฐพ๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค.

์ „ํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ์€ ํ•ด์„์ (analytic) ์ง€ํ‘œ์™€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค. ํ•ด์„์  ์ง€ํ‘œ์˜ ์˜ˆ๋กœ ๋กœ๋ด‡๊ณตํ•™์—์„œ ๋„๋ฆฌ ์“ฐ์ด๋Š” epsilon metric์ด ์žˆ๋Š”๋ฐ, ์ด๋Š” ํŒŒ์ง€๊ฐ€ ๋ฌผ์ฒด์— ๊ฐ€ํ•˜๋Š” ์ ‘์ด‰ ํž˜๋“ค์˜ ์กฐํ•ฉ์œผ๋กœ ๊นจ๋œจ๋ฆด ์ˆ˜ ์—†๋Š” ์ตœ์†Œ ์ถ”๊ฐ€ ํž˜์˜ ํฌ๊ธฐ๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ํ•ด์„์  ์ง€ํ‘œ๋“ค์€ ๊ณ„์‚ฐ์ด ๋น ๋ฅด์ง€๋งŒ ํ˜„์‹ค ์„ธ๊ณ„์™€์˜ ์˜ค์ฐจ๊ฐ€ ํฌ๊ณ  ์ ‘์ด‰์ด ๋“œ๋ฌธdex[footnote?] ํŒŒ์ง€์—๋Š” ๋ถ€์ ํ•ฉํ•œ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ง€ํ‘œ๋Š” ์‹ค์ œ๋กœ ๋ฌผ์ฒด๋ฅผ ์žก์€ ํ›„ ํž˜์„ ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ํ”๋“ค์–ด ๋ณด๋Š” ๊ฐ€์ƒ ์‹คํ—˜์œผ๋กœ ํŒŒ์ง€์˜ ์„ฑ๊ณต ์—ฌ๋ถ€๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฌผ๋ฆฌ์  ์ •ํ™•์„ฑ์ด ๋†’์ง€๋งŒ, ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋งŽ์ด ๋“ญ๋‹ˆ๋‹ค. ๋”์šฑ์ด, ์ด๋“ค ๊ธฐ์กด ์ ‘๊ทผ์—์„œ๋Š” ํ•ด์„์  ์ง€ํ‘œ๋‚˜ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๋ชจ๋‘ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋ฆฝ ์ž์„ธ๋ฅผ ์ฐพ๋Š” ์ตœ์ ํ™”๋Š” ์ฃผ๋กœ ๋ธ”๋ž™๋ฐ•์Šค ๋ฐฉ์‹์˜ ํƒ์ƒ‰์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์™”์Šต๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•œ ํ˜•ํƒœ์˜ ๊ทธ๋ฆฌํผ(์˜ˆ: ํ‰ํ–‰ ํ„ฑ ๊ทธ๋ฆฌํผ)์˜ ๊ฒฝ์šฐ ํŒŒ์ง€ ์ž์„ธ ๊ณต๊ฐ„์ด ์ €์ฐจ์›์ด๋ผ ๋ธ”๋ž™๋ฐ•์Šค ์ตœ์ ํ™”๋„ ๋ช‡ ๋‹จ๊ณ„์˜ ์‹œ๋„๋กœ ์ถฉ๋ถ„ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ธ๊ฐ„ ์†๊ณผ ๊ฐ™์€ ๊ณ ์ž์œ ๋„ ๋‹ค๊ด€์ ˆ ์†์˜ ๊ฒฝ์šฐ ํƒ์ƒ‰ ๊ณต๊ฐ„์ด ๊ฑฐ๋Œ€ํ•ด์ ธ์„œ ๊ธฐ์กด ๋ธ”๋ž™๋ฐ•์Šค ๊ธฐ๋ฒ•์€ ๊ณ„์‚ฐ์ ์œผ๋กœ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊นŒ์›Œ์ง‘๋‹ˆ๋‹ค.

์ด์— ๋”ฐ๋ผ ์—ฐ๊ตฌ์ž๋“ค์€ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ œ์•ฝ๊ณผ ๋‹จ์ˆœํ™” ๊ฐ€์ •์„ ๋„์ž…ํ•˜๊ณค ํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์œ ๋ช…ํ•œ GraspIt! ์†Œํ”„ํŠธ์›จ์–ด์—์„œ๋Š” ์†์˜ ์ž์œ ๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด eigengrasp๋ผ ๋ถˆ๋ฆฌ๋Š” ์†๊ฐ€๋ฝ ๊ณต์šฉ ์ขŒํ‘œ(์ฃผ์„ฑ๋ถ„ ํ˜•ํƒœ)๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๋ฌผ์ฒด์˜ ํŠน์ • ์ง€์ ์— ๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ์ ‘์ด‰ ์ง€์ ์„ ๋‘์–ด ์†์ด ๊ทธ ์ ๋“ค์„ ์žก๋„๋ก ์œ ๋„ํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฐ€์ •๋“ค์€ ํƒ์ƒ‰ ๊ณต๊ฐ„ ์ฐจ์›์„ ๋‚ฎ์ถฐ์ฃผ๊ธด ํ•ด๋„ ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ฐพ์„ ์ˆ˜ ์žˆ๋Š” ํŒŒ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ํ˜„์‹ค์„ฑ์„ ๋–จ์–ด๋œจ๋ฆฝ๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ ๊ธฐ์กด์˜ ํ•ด์„์  ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์œผ๋กœ ์ƒ์„ฑ๋œ ํŒŒ์ง€ ์ž์„ธ๋Š” ์ฃผ๋กœ ์†๊ฐ€๋ฝ ๋ ๋ช‡ ๊ตฐ๋ฐ๋กœ๋งŒ ๋ฌผ์ฒด๋ฅผ ๊ฐ„์‹ ํžˆ ์ง‘๋Š” ํ˜•ํƒœ๊ฐ€ ๋งŽ๊ณ , ์‚ฌ๋žŒ ์†์ด ๋ฌผ์ฒด๋ฅผ ๊ฐ์‹ธ ์ฅ˜ ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ๋„“์€ ๋ฉด์ ์˜ ์ ‘์ด‰์€ ์žฌํ˜„๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆผ 1์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ์ž˜ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์™ผ์ชฝ์˜ ๊ธฐ์กด ๋ฐฉ๋ฒ•(์˜ˆ: ObMan/GraspIt! ๊ธฐ๋ฐ˜ ํ•ฉ์„ฑ)์€ ๋ฌผ์ฒด ํ‘œ๋ฉด์— ์†๊ฐ€๋ฝ ๋๋งŒ ๋‹ฟ๋Š” ์„ฑ๊ธด ์ ‘์ด‰์„ ๊ฐ€์ง€์ง€๋งŒ, ์˜ค๋ฅธ์ชฝ์˜ Graspโ€™D ๋ฐฉ๋ฒ•์€ ์†๋ฐ”๋‹ฅ๊ณผ ์†๊ฐ€๋ฝ ์ „์ฒด๋กœ ๋ฌผ์ฒด๋ฅผ ๊ฐ์‹ธ ์•ˆ์ •์ ์ด๊ณ  ๋„“์€ ์ ‘์ด‰ ๋ฉด์ ์„ ํ™•๋ณดํ•œ ํŒŒ์ง€๋ฅผ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋“œ๋ฌธ ์ ‘์ด‰์˜ ํ•€์น˜ ๊ทธ๋ฆฝ์— ์˜์กดํ•˜๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ํŒŒ์ง€ ์•ˆ์ •์„ฑ์ด ๋‚ฎ๊ณ  ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์›Œ ์‹ค์ œ ์‚ฌ์šฉ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

Grasp'D: ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ๊ทธ๋ฆฝ ํ•ฉ์„ฑ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ

์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์—์„œ Graspโ€™D (Grasp โ€œDifferentiableโ€)๋Š” ๋ณต์žกํ•œ ๋‹ค๊ด€์ ˆ ์†์˜ ํŒŒ์ง€ ๋™์ž‘์„ ๋ณด๋‹ค ์‚ฌ์‹ค์ ์ด๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ๋ถ„๊ฐ€๋Šฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜(differentiable simulation)์„ ํ™œ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํ•ต์‹ฌ ์•„์ด๋””์–ด๋Š” ํŒŒ์ง€์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ณผ์ •์„ ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•˜๊ฒŒ ๊ตฌ์„ฑํ•˜์—ฌ, ์ด์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ(gradient)๋ฅผ ์ด์šฉํ•ด ์†์˜ ๊ด€์ ˆ ๊ฐ๋„๋ฅผ ์ง์ ‘ ์—ฐ์†์ ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ํ‘œ์ค€ ํ•ด์„์  ์ง€ํ‘œ๋‚˜ ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ฒ˜๋Ÿผ ์ผ์ผ์ด ์ƒ˜ํ”Œ์„ ์‹œ๋„ํ•ด๋ณด๋Š” ๋ธ”๋ž™๋ฐ•์Šค ํƒ์ƒ‰ ๋Œ€์‹ , ๊ธฐ์šธ๊ธฐ ์ •๋ณด๋ฅผ ๋”ฐ๋ผ๊ฐ€๋Š” ํšจ์œจ์ ์ธ ํƒ์ƒ‰์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ Graspโ€™D๋Š” ๊ณ ์ฐจ์› ๊ณต๊ฐ„์—์„œ๋„ ์‹œ๋„ ํšŸ์ˆ˜๋ฅผ ์ค„์ด๋ฉด์„œ๋„ ํ˜„์‹ค์„ฑ ๋†’์€ ํŒŒ์ง€๋ฅผ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํ‰๊ฐ€์˜ ์žฅ์ (๋ฌผ๋ฆฌ์  ํƒ€๋‹น์„ฑ, ํ™•์žฅ์„ฑ ๋“ฑ)์„ ๋ชจ๋‘ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Graspโ€™D ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์ „์ฒด ๊ตฌ์กฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ฌผ์ฒด์™€ ์†์˜ 3D ๋ชจ๋ธ(๋ฉ”์‰ฌ ํ˜น์€ Signed Distance Function ํ‘œํ˜„ ๋“ฑ)์ด ์ฃผ์–ด์ง€๋ฉด, ์† ๋ชจ๋ธ์„ ๋ฌผ์ฒด ๊ทผ์ฒ˜์˜ ์ž„์˜์˜ ์ดˆ๊ธฐ ์ž์„ธ๋กœ ๋ฐฐ์น˜ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ฏธ๋ถ„๊ฐ€๋Šฅ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•ด ํ•ด๋‹น ์ž์„ธ์˜ ํŒŒ์ง€ ์•ˆ์ •์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ทธ๋ฆฝ Metric(๋ชฉ์  ํ•จ์ˆ˜)์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. Graspโ€™D์—์„œ ์‚ฌ์šฉ๋œ ๊ทธ๋ฆฝ ํ‰๊ฐ€์ง€ํ‘œ๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ •์˜๋˜๋Š”๋ฐ, ๊ฐ„๋‹จํžˆ ๋งํ•ด ๋ฌผ์ฒด์— ์ž‘์€ ๊ต๋ž€(force๋‚˜ ์†๋„)์„ ์ฃผ์—ˆ์„ ๋•Œ ๋ฌผ์ฒด๊ฐ€ ์†์—์„œ ๋น ์ ธ๋‚˜๊ฐ€๋Š” ์ •๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฐ’์ž…๋‹ˆ๋‹ค. ์ด ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก (์ฆ‰ ๋ฌผ์ฒด์˜ ์ตœ์ข… ์›€์ง์ž„์ด ๋ฏธ๋ฏธํ• ์ˆ˜๋ก) ํŒŒ์ง€๊ฐ€ ์•ˆ์ •์ ์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ์ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ณผ์ •์ด ์—ฐ์†์  ํ•จ์ˆ˜์ฒ˜๋Ÿผ ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด ์žˆ์–ด, ์†๊ฐ€๋ฝ ๊ด€์ ˆ๊ฐ ๋“ฑ์— ๋Œ€ํ•œ ์ด ๊ทธ๋ฆฝ Metric์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์†์˜ ์ž์„ธ ๋งค๊ฐœ๋ณ€์ˆ˜๋“ค์„ ์ด ๊ทธ๋ž˜๋””์–ธํŠธ์— ๋”ฐ๋ผ ์กฐ๊ธˆ์”ฉ ์กฐ์ •ํ•˜๋ฉด์„œ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ตœ์ ํ™”(gradient descent)ํ•˜๋ฉด ํŒŒ์ง€ ํ’ˆ์งˆ์ด ํ–ฅ์ƒ๋ฉ๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ Graspโ€™D ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์ดˆ๊ธฐ์—๋Š” ๋ฌผ์ฒด๋ฅผ ์ œ๋Œ€๋กœ ์žก์ง€ ๋ชปํ–ˆ๋˜ ์†์ด ์ ์ง„์ ์œผ๋กœ ์†๊ฐ€๋ฝ์„ ๋ฌผ์ฒด์— ๋ฐ€์ฐฉ์‹œํ‚ค๊ณ  ์•ˆ์ชฝ์œผ๋กœ ๊ฐ์œผ๋ฉด์„œ, ์ตœ์ข…์ ์œผ๋กœ ์•ˆ์ •์ ์ด๊ณ  ์ ‘์ด‰๋ฉด์ ์ด ๋„“์€ ํŒŒ์ง€ ์ž์„ธ๋ฅผ ์™„์„ฑํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆผ 1: Graspโ€™D ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์†์ด ๋ฌผ์ฒด๋ฅผ ์žก์•„๊ฐ€๋Š” ๊ณผ์ • ์˜ˆ์‹œ. ์ดˆ๊ธฐ์—๋Š” ์†๊ฐ€๋ฝ ๋๋งŒ ์ ‘์ด‰ํ•˜์ง€๋งŒ, ์ตœ์ ํ™”๊ฐ€ ์ง„ํ–‰๋ ์ˆ˜๋ก ์†๊ฐ€๋ฝ๊ณผ ์†๋ฐ”๋‹ฅ์„ ํ™œ์šฉํ•ด ๋ฌผ์ฒด๋ฅผ ๊นŠ์ˆ™์ด ๊ฐ์‹ธ ์ฅ๋ฉฐ ์ ‘์ด‰ ๋ฉด์ ๊ณผ ์•ˆ์ •์„ฑ์„ ๋†’์—ฌ๋‚˜๊ฐ„๋‹ค.

Graspโ€™D์˜ ์ค‘์š”ํ•œ ํŠน์ง•์€, ํŒŒ์ง€๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋ชจ๋“  ์ ‘์ด‰๋ฉด์„ ์ œํ•œํ•˜์ง€ ์•Š๊ณ  ํ’€์–ด๋‘”๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์† ๋ชจ๋ธ์˜ ํ‘œ๋ฉด(์†๋ฐ”๋‹ฅ, ์†๊ฐ€๋ฝ ๋งˆ๋”” ๋“ฑ) ์ „์ฒด๊ฐ€ ์ž ์žฌ์ ์ธ ์ ‘์ด‰ ์ง€์ ์œผ๋กœ ํ™œ์šฉ๋˜๋ฉฐ, Graspโ€™D๋Š” ์ด ์ˆ˜์ฒœ ๊ฐœ์— ๋‹ฌํ•˜๋Š” ์ ‘์ด‰ ํ›„๋ณด ์ง€์ ๋“ค์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋ฉด์„œ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์ด ์ ‘์ด‰์ ์„ ๋ช‡ ๊ตฐ๋ฐ ๋ฏธ๋ฆฌ ์ •ํ•ด๋‘๊ฑฐ๋‚˜ ์†๊ฐ€๋ฝ ์ž์„ธ ์ž์œ ๋„๋ฅผ ์ธ์œ„์ ์œผ๋กœ ์ค„์˜€๋˜ ๊ฒƒ๊ณผ ๋Œ€์กฐ์ ์ž…๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์ด๋Ÿฌํ•œ ๊ฐ„์†Œํ™” ๊ฐ€์ • ์—†์ด๋„ ๊ด‘๋ฒ”์œ„ํ•œ ์ ‘์ด‰์„ ํ™œ์šฉํ•œ ํŒŒ์ง€๋ฅผ ์ฐพ์•„๋‚ด๋ฉฐ, ์ด๋Š” ๊ณง ๊ณ ์ ‘์ด‰-ํŒŒ์›Œ ๊ทธ๋ฆฝ(high-contact power grasp)์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ตญ ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„ ์†๋ฟ ์•„๋‹ˆ๋ผ ๋กœ๋ด‡ ์† ๋“ฑ ์ž„์˜์˜ ๋‹ค๊ด€์ ˆ ์† ๋ชจ๋ธ์— ๋Œ€ํ•ด, ์ฃผ์–ด์ง„ ๋ฌผ์ฒด๋ฅผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ˜„์‹ค์„ฑ ์žˆ๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์žก๋Š” ์ž์„ธ๋ฅผ ๋ฏธ๋ถ„๊ฐ€๋Šฅ ์ตœ์ ํ™”๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

ํ•œํŽธ Graspโ€™D๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜(learning-based) ์ ‘๊ทผ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ๋‚˜ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์ด ํ•„์š”ํ•˜์ง€ ์•Š์€ ์ตœ์ ํ™” ๊ฒฝ๋กœ๋ฅผ ์ทจํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ช‡ ๊ฐ€์ง€ ์žฅ์ ์„ ์ง€๋‹ˆ๋Š”๋ฐ, ์ฒซ์งธ๋กœ ๋Œ€๊ทœ๋ชจ์˜ ํŒŒ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค๊ณ  ํ•™์Šต์‹œํ‚ค๋Š” ๋ฒˆ๊ฑฐ๋กœ์šด ๊ณผ์ •์„ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ธ๊ฐ„์˜ ํŒŒ์ง€ ๋™์ž‘์„ ์บก์ฒ˜ํ•˜๊ฑฐ๋‚˜ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋กœ ์ˆ˜์‹ญ๋งŒ ๊ฐ€์ง€ ํŒŒ์ง€๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ํ•™์Šต์‹œํ‚ค๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋‹ฌ๋ฆฌ, Graspโ€™D๋Š” ๋ฌผ์ฒด์˜ 3D ํ˜•ํƒœ๋งŒ ์ฃผ์–ด์ง€๋ฉด ๊ทธ ์ž๋ฆฌ์—์„œ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ํŒŒ์ง€๋ฅผ ์ฐพ์•„๋‚ด๋ฏ€๋กœ ์ƒˆ๋กœ์šด ๋ฌผ์ฒด๋‚˜ ์†์— ๋Œ€ํ•ด์„œ๋„ ๋ฒ”์šฉ์ ์œผ๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‘˜์งธ๋กœ, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๊ธฐ๋ฐ˜ํ•˜๋ฏ€๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ฐ–์˜ ๊ฒฝ์šฐ์—๋„ ๋ฌผ๋ฆฌ ๋ฒ•์น™์— ๋งž๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ณ , ์†๊ณผ ๋ฌผ์ฒด์˜ ์ž„์˜ ์กฐํ•ฉ์— ๋Œ€ํ•ด ์ œ์•ฝ ์—†์ด ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํ•™์Šต๋˜์ง€ ์•Š์€ ์ตœ์ ํ™” ๊ฒฝ๋กœ๋Š” ํ•ด์„์  ์กฐ์ •์ด ์šฉ์ดํ•˜๋‹ค๋Š” ์ด์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์žก๊ณ ์ž ํ•˜๋Š” ๋ฌผ์ฒด์˜ ์žฌ์งˆ์— ๋”ฐ๋ผ ๋งˆ์ฐฐ๊ณ„์ˆ˜๋ฅผ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•œ๋‹ค๊ฑฐ๋‚˜ (์œ ๋ฆฌ๋Š” ๋‚ฎ์€ ๋งˆ์ฐฐ, ๊ณ ๋ฌด๋Š” ๋†’์€ ๋งˆ์ฐฐ), ์†์˜ ๊ด€์ ˆ ๊ฐ€๋™ ๋ฒ”์œ„๋ฅผ ์ œํ•œํ•˜๋Š” ๋“ฑ์˜ ๋ฌผ๋ฆฌ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€๊ฒฝ์„ ๊ณง๋ฐ”๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•™์Šต๋œ ๋ชจ๋ธ์ด๋ผ๋ฉด ์ด๋Ÿฐ ๋ณ€๊ฒฝ์— ์žฌํ•™์Šต์ด ํ•„์š”ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, Graspโ€™D ์ตœ์ ํ™”๋Š” ๋ฌผ๋ฆฌ ๋ชจ๋ธ๋งŒ ๋ฐ”๊พธ๋ฉด ์ฆ‰์‹œ ๋ฐ˜์˜๋˜๋ฏ€๋กœ ํ™•์žฅ์„ฑ(extensibility)์ด ๋†’์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์ด๋Ÿฐ ๋น„ํ•™์Šต์  ์ ‘๊ทผ์˜ ๋‹จ์ ์œผ๋กœ๋Š” ๊ฐœ๋ณ„ ํŒŒ์ง€๋ฅผ ์ฐพ๋Š”๋ฐ ์‹œ๊ฐ„์ด ๊ฑธ๋ ค ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ์—๋Š” ์•„์ง ๋А๋ฆฌ๋‹ค๋Š” ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค (๋…ผ๋ฌธ ์ €์ž๋“ค์— ๋”ฐ๋ฅด๋ฉด ๋ฌผ์ฒด ํ•˜๋‚˜๋‹น ์•ฝ 5๋ถ„ ์ •๋„ ์ตœ์ ํ™”๊ฐ€ ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค). ํ•˜์ง€๋งŒ ์˜คํ”„๋ผ์ธ์—์„œ ํŒŒ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ๋Œ€๋Ÿ‰ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜, ๋˜๋Š” ํ–ฅํ›„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ตœ์ ํ™” ๊ธฐ์ˆ ์˜ ์†๋„๊ฐ€ ๊ฐœ์„ ๋œ๋‹ค๋ฉด ์ถฉ๋ถ„ํžˆ ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์ด๋ฉฐ, ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ์ •ํ™•์„ฑ์„ ๊ณ ๋ คํ•˜๋ฉด ๊ฐ’์ง„ trade-off๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ ‘์ด‰ ๋ชจ๋ธ๋ง๊ณผ ์†-๋ฌผ์ฒด ์ƒํ˜ธ์ž‘์šฉ์˜ ์ˆ˜์น˜์  ์ •์‹ํ™”

Graspโ€™D์˜ ์‹ฌ์žฅ์€ ๋ฏธ๋ถ„๊ฐ€๋Šฅ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์†-๋ฌผ์ฒด ์ ‘์ด‰(contact)์„ ์–ด๋–ป๊ฒŒ ๋ชจ๋ธ๋งํ•˜๊ณ  ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“ค์—ˆ๋Š”์ง€๊ฐ€ ํ•ต์‹ฌ์ธ๋ฐ, ์ด๋ฅผ ์œ„ํ•ด Graspโ€™D๋Š” ๋ฌผ์ฒด์˜ ํ‘œ๋ฉด์„ Signed Distance Field (SDF) ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•˜์—ฌ ์ถฉ๋Œ์„ ๊ฐ์ง€ํ•˜๊ณ  ์ ‘์ด‰๋ ฅ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. SDF๋ž€ ์ž„์˜์˜ ์  x์— ๋Œ€ํ•ด ๋ฌผ์ฒด ํ‘œ๋ฉด๊นŒ์ง€์˜ ์ตœ๋‹จ ๊ฑฐ๋ฆฌ๋ฅผ ๋ถ€ํ˜ธ์™€ ํ•จ๊ป˜ ์ œ๊ณตํ•˜๋Š” ํ•จ์ˆ˜ \phi(x)๋กœ, ๋ฌผ์ฒด ๋‚ด๋ถ€์˜ ์ ์ด๋ฉด ์Œ์ˆ˜, ์™ธ๋ถ€๋ฉด ์–‘์ˆ˜ ๊ฐ’์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. ์ด ํ•จ์ˆ˜์˜ ์Œ์˜(signed) ๋•๋ถ„์— x๊ฐ€ ๋ฌผ์ฒด ํ‘œ๋ฉด ์•ˆ์ชฝ์œผ๋กœ ํŒŒ๊ณ ๋“  ๊นŠ์ด(penetration depth)๋ฅผ ๋‚˜ํƒ€๋‚ผ ์ˆ˜๋„ ์žˆ๊ณ , ๊ธฐ์šธ๊ธฐ \nabla \phi(x)๋Š” ํ•ด๋‹น ์ ์—์„œ์˜ ํ‘œ๋ฉด ๋ฒ•์„  ๋ฐฉํ–ฅ(normal direction)์„ ๊ฐ€๋ฆฌํ‚ต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์ด ์„ฑ์งˆ์„ ์ด์šฉํ•ด ์ ‘์ด‰๋ ฅ์„ ๊ณ„์‚ฐํ•˜๋Š” ์—ฐ์†ํ•จ์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

๊ฐ„๋žตํžˆ ๋งํ•ด, ์†์˜ ๊ฐ ์ž ์žฌ์  ์ ‘์ด‰ ์ง€์ (์†์˜ ๋ฉ”์‹œ ๋ฒ„ํ…์Šค ๋“ฑ)์„ x_h \in X_h๋ผ ํ•  ๋•Œ, ๊ทธ ์ ์˜ ํ˜„์žฌ SDF ๊ฐ’ \phi(x_h)๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ \phi(x_h) < 0 (์ฆ‰ ์†์ด ๊ทธ ์ง€์ ์—์„œ ๋ฌผ์ฒด๋ฅผ ์นจํˆฌํ•˜์—ฌ ๊ฒน์ณ์žˆ๋Š” ๊ฒฝ์šฐ)๋ผ๋ฉด ์ ‘์ด‰์ด ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ  ๋ฒ•์„ ๋ฐฉํ–ฅ ๋ฐ˜๋ฐœ๋ ฅ f_n์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. Graspโ€™D์—์„œ๋Š” ์ด๋ฅผ ๋ฒŒ์ (penalty) ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋กœ ๊ตฌํ˜„ํ•˜์—ฌ, ์˜ˆ๋ฅผ ๋“ค์–ด ์Šคํ”„๋ง-๋Œํผ์ฒ˜๋Ÿผ f_n = k_n \min(\phi(x_h), 0) \nabla\phi(x_h)์˜ ํ˜•ํƒœ๋กœ ์นจํˆฌ ๊นŠ์ด์— ๋น„๋ก€ํ•˜๋Š” ํƒ„์„ฑ๋ณต์›๋ ฅ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ k_n์€ ๋ฒ•์„  ๋ฐฉํ–ฅ ๊ฐ•์„ฑ ๊ณ„์ˆ˜๋กœ, ๋งค์šฐ ํฌ๊ฒŒ ์ฃผ์–ด์ง€๋ฉด ๋‘ ๋ฌผ์ฒด๊ฐ€ ์‹ค์ œ๋กœ ๊ฒน์น˜์ง€ ์•Š๋„๋ก ๊ฐ•ํ•œ ํž˜์œผ๋กœ ๋ฐ€์–ด๋‚ด๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•œํŽธ \phi(x_h) \ge 0์ด๋ฉด (์†์ด ์•„์ง ๋‹ฟ์ง€ ์•Š์€ ๊ฒฝ์šฐ) f_n = 0์ด ๋ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๊ณ„์‚ฐ๋œ ๋ฒ•์„ ๋ ฅ f_n์€ ์†์ด ๋ฌผ์ฒด ํ‘œ๋ฉด์„ ๋ฏธ๋Š” ํž˜์ด๊ณ , ๋ฌผ์ฒด๋ฅผ ์žก์•„ ๋ฒ„ํ‹ฐ๋Š” ๊ธฐ๋ณธ์ ์ธ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

ํ•˜์ง€๋งŒ ๋งˆ์ฐฐ ์—†๋Š” ๋ฒ•์„ ๋ ฅ๋งŒ์œผ๋กœ๋Š” ์‹ค์ œ ํŒŒ์ง€๋ฅผ ์žฌํ˜„ํ•  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ, Graspโ€™D๋Š” ๋งˆ์ฐฐ๋ ฅ f_t๋„ ๋ชจ๋ธ๋งํ•ฉ๋‹ˆ๋‹ค. ์ ‘์ด‰ ์ง€์ ์—์„œ ์†๊ณผ ๋ฌผ์ฒด ์‚ฌ์ด์— ์ƒ๋Œ€ ์†๋„(๋˜๋Š” ์˜ˆ์ƒ ๋ฏธ๋„๋Ÿผ ์†๋„) \mathbf{v}_t๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ฟจ๋กฑ ๋งˆ์ฐฐ ๋ฒ•์น™์— ๋”ฐ๋ผ ํƒ„์  ์…œ(tangential) ๋ฐฉํ–ฅ์˜ ์ €ํ•ญ๋ ฅ f_t๋ฅผ ๋ถ€์—ฌํ•ฉ๋‹ˆ๋‹ค. ์ˆ˜์‹์œผ๋กœ๋Š” f_t = -\min(k_f \Vert \mathbf{v}_t \Vert,\\; \mu \Vert f_n \Vert)\\, \hat{\mathbf{v}}_t ๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์—ฌ๊ธฐ์„œ k_f๋Š” ํƒ„์  ์…œ ํž˜ ๊ฒŒ์ธ(๋งˆ์ฐฐ ๊ฐ•์„ฑ), \mu๋Š” ๋งˆ์ฐฐ๊ณ„์ˆ˜, \hat{\mathbf{v}}_t๋Š” ํƒ„์  ์…œ ์†๋„์˜ ๋ฐฉํ–ฅ ๋‹จ์œ„ ๋ฒกํ„ฐ์ž…๋‹ˆ๋‹ค. ์ด ์‹์€ ์ž‘์€ ๋ฏธ๋„๋Ÿผ์— ๋Œ€ํ•ด์„œ๋Š” ๋งˆ์ฐฐ๋ ฅ์ด k_f์— ๋น„๋ก€ํ•˜์—ฌ ์ฆ๊ฐ€ํ•˜์ง€๋งŒ ์–ด๋А ์ž„๊ณ„์น˜ ์ด์ƒ (์ฆ‰ ์ฟจ๋กฑ ๋งˆ์ฐฐ ํ•œ๊ณ„ \mu \Vert f_n \Vert)์—์„œ๋Š” ๋” ์ด์ƒ ์ฆ๊ฐ€ํ•˜์ง€ ์•Š๊ณ  ์Šฌ๋ฆฝ์ด ๋ฐœ์ƒํ•จ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋งˆ์ฐฐ ๋ชจ๋ธ์„ ๋„์ž…ํ•จ์œผ๋กœ์จ Graspโ€™D ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๋ฌผ์ฒด๋ฅผ ์ฅ” ์†๊ฐ€๋ฝ์ด ๋ฏธ๋„๋Ÿฌ์ง€์ง€ ์•Š๊ณ  ๋ฒ„ํ‹ธ ์ˆ˜ ์žˆ๋Š” ํ•œ๊ณ„๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๊ณ , ํŒŒ์ง€์˜ ์•ˆ์ •์„ฑ์„ ๋ณด๋‹ค ํ˜„์‹ค์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”์šฑ์ด ์ด์ „์˜ ์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ Graspโ€™D๋Š” ๋งˆ์ฐฐ๊ณ„์ˆ˜๋ฅผ 0์ด ์•„๋‹Œ ์ž„์˜์˜ ๊ฐ’์œผ๋กœ ๋‘˜ ์ˆ˜ ์žˆ๊ณ , ์ ‘์ด‰ ์ง€์ ๋งˆ๋‹ค ์„œ๋กœ ๋‹ค๋ฅธ ํž˜์ด ๋ฐœ์ƒํ•˜๋„๋ก ํ—ˆ์šฉํ•˜์—ฌ ์‹ค์ œ ๋ฌผ๋ฆฌ์™€ ๋” ๊ฐ€๊น์Šต๋‹ˆ๋‹ค (๊ธฐ์กด ์ผ๋ถ€ ์—ฐ๊ตฌ๋Š” ํ•ด์„์  ๋‹จ์ˆœํ™”๋ฅผ ์œ„ํ•ด ๋ชจ๋“  ์ ‘์ ์— ๋™์ผํ•œ ํž˜์ด ๊ฑธ๋ฆฐ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ฑฐ๋‚˜ ๋งˆ์ฐฐ์ด ์—†๋‹ค๊ณ  ๋‘์—ˆ์Œ).

Graspโ€™D ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š” ์ด๋Ÿฌํ•œ ์ ‘์ด‰ ๋ชจ๋ธ์„ ํ†ตํ•ฉํ•˜์—ฌ, ๋ฐ˜๋ณต์  ์‹œ๊ฐ„ ์Šคํ… ๋ฌผ๋ฆฌ์—”์ง„์ฒ˜๋Ÿผ ์†๊ณผ ๋ฌผ์ฒด์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์†๊ณผ ๋ฌผ์ฒด์˜ ์ƒํƒœ๋ฅผ ํ•ฉ์นœ ๊ตฌ์„ฑ ๋ฒกํ„ฐ q๋ฅผ ์ •์˜ํ•˜๊ณ , ๊ทธ ์‹œ๊ฐ„๋ฏธ๋ถ„ q\' (์†๋„)์™€ q\'\' (๊ฐ€์†๋„)๋ฅผ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์‹œ์Šคํ…œ์˜ ์šด๋™ ๋ฐฉ์ •์‹์€ ๊ด€์ ˆ์˜ ์ž‘์šฉ์œผ๋กœ ์ธํ•œ ๊ฐ€์†๋„(H(q)u)์™€ ์ ‘์ด‰/์™ธ๋ ฅ์œผ๋กœ ์ธํ•œ ๊ฐ€์†๋„๊ฐ€ ํ•ฉ์ณ์ ธ q\'\'๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํ˜•ํƒœ๋กœ ์„ธ์›Œ์ง€๋ฉฐ, ์ด๋ฅผ \text{(์งˆ๋Ÿ‰ํ–‰๋ ฌ)} \times q\'\' = f_c + f_{\text{ext}}์™€ ๊ฐ™์€ ์‹์œผ๋กœ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ๋ฐ˜-๋ช…์‹œ์ (semi-implicit) ์˜ค์ผ๋Ÿฌ ์ ๋ถ„ ๋ฐฉ์‹์œผ๋กœ ํ’€์–ด 1ํšŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์Šคํ…์˜ ์ƒํƒœ ๋ณ€ํ™”๋ฅผ ๊ณ„์‚ฐํ–ˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ„๋‹จํžˆ ๋งํ•ด, ํ˜„์žฌ ์†์˜ ์ž์„ธ q_h์—์„œ ๋ฌผ์ฒด์— ์ดˆ๊ธฐ ๊ต๋ž€(์˜ˆ: ์†๋„)์„ ์ฃผ๊ณ  ์•„์ฃผ ์งง์€ ์‹œ๊ฐ„ \Delta t (์˜ˆ: 10^{-5}์ดˆ) ๋™์•ˆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋ฉด, ์ ‘์ด‰ ๋ชจ๋ธ์— ์˜ํ•ด ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ํž˜์ด ๋ฐœ์ƒํ•˜๊ณ  ๊ทธ์— ๋”ฐ๋ผ ๋ฌผ์ฒด์˜ ์†๋„๊ฐ€ ๋ณ€ํ™”ํ•ฉ๋‹ˆ๋‹ค. Graspโ€™D์˜ ๊ทธ๋ฆฝ ํ’ˆ์งˆ ์ฒ™๋„(metric) L_{\text{grasp}}๋Š” ์ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฌผ์ฒด์˜ ๋‚จ์€ ์†๋ ฅ์œผ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค โ€“ ์ฆ‰ L = \Vert \mathbf{v}_{\text{object}}(T) \Vert๋กœ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ข…๋ฃŒ ์‹œ์  T์— ๋ฌผ์ฒด๊ฐ€ ์–ผ๋งˆ๋‚˜ ์›€์ง์ด๊ณ  ์žˆ๋Š”์ง€๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ํŠผํŠผํ•œ ํŒŒ์ง€์ผ์ˆ˜๋ก ๋ฌผ์ฒด๊ฐ€ ์ž˜ ๊ณ ์ •๋˜์–ด ์†๋„๊ฐ€ 0์— ๊ฐ€๊นŒ์›Œ์•ผ ํ•˜๋ฏ€๋กœ, Graspโ€™D๋Š” ์ด ์†๋„์˜ ํฌ๊ธฐ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์†์˜ ์ž์„ธ๋ฅผ ์ตœ์ ํ™”ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. (์ฐธ๊ณ ๋กœ ์•ˆ์ •์„ฑ ํ‰๊ฐ€์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ์ดˆ๊ธฐ ๊ต๋ž€์ด ์•„๋‹ˆ๋ผ ์—ฌ๋Ÿฌ ๋ฐฉํ–ฅ์˜ ๋ฌด์ž‘์œ„ ์ดˆ๊ธฐ ์†๋„๋ฅผ ๋ฌผ์ฒด์— ์ฃผ์–ด ์—ฌ๋Ÿฌ ๋ฒˆ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ ํ›„ ํ‰๊ท  ์†๋„๋ฅผ ์“ฐ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.)

Graspโ€™D์˜ ๋ชจ๋“  ๊ณ„์‚ฐ(์ถฉ๋Œ ํŒ์ •, ์ ‘์ด‰๋ ฅ ๊ณ„์‚ฐ, ๋ฌผ์ฒด ์šด๋™๋Ÿ‰ ๋ณ€ํ™” ๋“ฑ)์€ ์—ฐ์†์  ์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„๋˜์–ด ์žˆ์–ด, ์ž…๋ ฅ์ธ ์† ๊ด€์ ˆ๊ฐ q_h์— ๋Œ€ํ•ด ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” SDF ๊ธฐ๋ฐ˜ ์ถฉ๋Œ ๋ชจ๋ธ ๋•๋ถ„์ธ๋ฐ, \phi(x)์™€ \nabla \phi(x) ๋“ฑ์ด ๋งค๋„๋Ÿฝ๊ฒŒ ์ •์˜๋˜๋ฏ€๋กœ ์ ‘์ด‰๋ ฅ์ด ์‚ฌ์‹ค์ƒ q_h์˜ ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„๋˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋‹จ, ๋งˆ์ฐฐ ๋ชจ๋ธ์˜ min ์—ฐ์‚ฐ์ด๋‚˜ max(0, ฯ†) ๊ฐ™์€ ๋ถ€๋ถ„์€ ์ˆ˜ํ•™์ ์œผ๋กœ ๋งค๋„๋Ÿฝ์ง€ ์•Š์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ์ ์ ˆํžˆ ์ฒ˜๋ฆฌํ•˜์—ฌ ์ž๋™ ๋ฏธ๋ถ„์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ๊ตฌํ˜„ํ–ˆ๋‹ค๊ณ  ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•ด์„œ ๊ทธ๋ฆฝ ํ’ˆ์งˆ ํ•จ์ˆ˜ L(q_h)์˜ ๊ทธ๋ž˜๋””์–ธํŠธ \nabla_{q_h} L๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ณ , ์ด ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด ์†์˜ ์ž์„ธ๋ฅผ ๊ฐฑ์‹ ํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ ํ™”์—๋Š” ํ‘œ์ค€์ ์ธ Adam (์ •ํ™•ํžˆ๋Š” Adamax) ์˜ตํ‹ฐ๋งˆ์ด์ €๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํ•™์Šต๋ฅ  ๋“ฑ์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์€ ๋ถ€๋ก์— ์ œ์‹œ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ์ ์€, ์†-๋ฌผ์ฒด ์ ‘์ด‰์˜ ๋ชจ๋“  ๋ฉด๋ฉด์ด ์ˆ˜์น˜์ ์œผ๋กœ ๊ณต์‹ํ™”๋˜์–ด ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ์ฒ˜๋ฆฌ๋˜์—ˆ๋‹ค๋Š” ๊ฒƒ์œผ๋กœ, ์ด๊ฒƒ์ด Graspโ€™D์˜ ํ˜์‹ ์˜ ํ•ต์‹ฌ์ด๋ผ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ตœ์ ํ™” ๊ณผ์ •์˜ ํ•ต์‹ฌ ๊ธฐ๋ฒ•๋“ค: ๋‚œ์ œ ๋Œ€์‘ ๋ฐ ๋ชฉ์ ํ•จ์ˆ˜ ๊ตฌ์„ฑ

๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๋งˆ๋ จํ–ˆ๋‹ค ํ•˜๋”๋ผ๋„, ๊ณง๋ฐ”๋กœ ๊ทธ๋ผ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ํŒŒ์ง€ ์ตœ์ ํ™”๋ฅผ ์‹คํ–‰ํ•˜๋ฉด ์—ฌ๋Ÿฌ ์‹ค์šฉ์ ์ธ ๋‚œ๊ด€์— ๋ถ€๋”ชํžˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. Graspโ€™D ๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ์ž˜ ๋ถ„์„ํ•˜๊ณ  ์„ธ ๊ฐ€์ง€ ์ฃผ์š” ์•„์ด๋””์–ด๋กœ ํ•ด๊ฒฐํ•˜๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋ฅผ ํ•˜๋‚˜์”ฉ ์†Œ๊ฐœํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค:

  • (1) ๋น„์—ฐ์†์  ์ง€ํ˜• ์™„ํ™”: ํ‘œ๋ฉด ๋งค๋„๋Ÿฝ๊ฒŒ ํ•˜๊ธฐ โ€“ ์‹ค์ œ ๋ฌผ์ฒด์˜ ๋ฉ”์‰ฌ๋Š” ๋ชจ์„œ๋ฆฌ๋‚˜ ๋พฐ์กฑํ•œ ๋ถ€๋ถ„์—์„œ SDF์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ๋ถˆ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ์ ‘์ด‰๋ ฅ์ด ๊ฐ‘์ž๊ธฐ ํŠ€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„๋ฏธ๋ถ„์  ์ง€ํ˜• (nondifferentiable landscape)์—์„œ๋Š” gradient descent๊ฐ€ ์ œ๋Œ€๋กœ ์ง„ํ–‰๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ณ„์ธต์ (Coarse-to-fine) ์ตœ์ ํ™” ์ „๋žต์„ ๋„์ž…ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ดˆ๋ฐ˜์—๋Š” ๋ฌผ์ฒด ํ‘œ๋ฉด์„ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๋ญ‰๋šฑ๊ทธ๋ฆฐ ํ˜•ํƒœ๋กœ ๊ฐ„์ฃผํ•˜๊ณ  ์†์„ ์ตœ์ ํ™”ํ•˜๋‹ค๊ฐ€, ์ ์ฐจ ์‹ค์ œ ์„ธ๋ถ€ ํ˜•์ƒ์— ๊ฐ€๊น๊ฒŒ ํ•ด์ƒ๋„๋ฅผ ๋†’์—ฌ๊ฐ€๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๊ตฌํ˜„์ƒ์œผ๋กœ๋Š” ์›๋ณธ SDF๋ฅผ ์•ฝ๊ฐ„ ํ™•์žฅ(thicken)ํ•˜๊ณ  ๋งค๋„๋Ÿฝ๊ฒŒ ๋งŒ๋“  ํผ์ง€ ํ‘œ๋ฉด๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ, iteration์ด ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๊ทธ ๋‘๊ป˜๋ฅผ ์ค„์—ฌ ์›๋ž˜ ํ‘œ๋ฉด์— ์ˆ˜๋ ด์‹œํ‚ค๋Š” ๊ณผ์ •์„ ๊ฑฐ์นฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ดˆ๊ธฐ์—๋Š” ์†์ด ์•ฝ๊ฐ„ ๋‘ฅ๊ทผ ํ˜•ํƒœ์˜ ๋ฌผ์ฒด๋ฅผ ์žก๊ธฐ ๋•Œ๋ฌธ์— ์ ‘์ด‰๋ฉด์—์„œ gradient๊ฐ€ ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ•˜๊ณ , ์ตœ์ ํ™”๊ฐ€ ์ง„ํ–‰๋ ์ˆ˜๋ก ์‹ค์ œ ๋ชจ์„œ๋ฆฌ๋‚˜ ์„ธ๋ถ€๊นŒ์ง€ ๋Œ€์‘ํ•˜๋ฉด์„œ ์†๊ฐ€๋ฝ์ด ๋ฏธ์„ธ ์กฐ์ •๋ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋น„์—ฐ์†์ ์ธ ํ‘œ๋ฉด์œผ๋กœ ์ธํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ ํ•จ์ •์„ ํ”ผํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์ฒ˜์Œ์—” ๋ฌผ์ฒด๋ฅผ ๋งค๋ˆํ•œ ๊ณต์ฒ˜๋Ÿผ ์ทจ๊ธ‰ํ•˜์—ฌ ์†์„ ์œ„์น˜์‹œํ‚ค๊ณ , ์ ์ฐจ ์‹ค์ œ ๋ชจ์–‘์„ ๋“œ๋Ÿฌ๋‚ด๋Š” ๊ธฐ๋ฒ•์ด๋ผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค (์‚ฌ์‹ค ์ด ์•„์ด๋””์–ด๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ LeakyReLU๊ฐ€ ์ฃฝ์€ ๋‰ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•œ ๋งฅ๋ฝ์œผ๋กœ ๋ณผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค).

  • (2) ์ ‘์ด‰ ํฌ์†Œ์„ฑ ๋Œ€์‘: ๊ทธ๋ž˜๋””์–ธํŠธ ๋ˆ„์„ค(leak) โ€“ ์ตœ์ ํ™”๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ ์†์ด ๋ฌผ์ฒด์— ์•„์˜ˆ ๋‹ฟ์•„์žˆ์ง€ ์•Š์œผ๋ฉด, ์ ‘์ด‰๋ ฅ์ด 0์ด๋ฏ€๋กœ ๋ชฉ์ ํ•จ์ˆ˜ L์— ๋Œ€ํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ๋„ 0์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ์†์ด ์–ด๋””๋กœ ์›€์ง์—ฌ์•ผ ํ• ์ง€ ์‹ ํ˜ธ๊ฐ€ ์—†์œผ๋ฏ€๋กœ ์ตœ์ ํ™”๊ฐ€ ์‹œ์ž‘๋ถ€ํ„ฐ ๋ฉˆ์ถฐ๋ฒ„๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๋ ค๋ฉด ์ตœ์†Œํ•œ ์†์ด ๋ฌผ์ฒด์™€ ์•ฝ๊ฐ„์˜ ์ ‘์ด‰ ๋˜๋Š” ๊ฐ„์„ญ์ด ์žˆ๋Š” ์ƒํƒœ์—์„œ ์‹œ์ž‘ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ฒ˜์Œ๋ถ€ํ„ฐ ๋ฌด๋ฆฌํ•˜๊ฒŒ ๊นŠ์ด ํŒŒ๊ณ ๋“ค๊ฒŒ ํ•˜๋ฉด ๋˜ ๋น„ํ˜„์‹ค์ ์ธ ํŒŒ์ง€๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์ด ๋”œ๋ ˆ๋งˆ๋ฅผ โ€œ์˜๋„์  ๊ทธ๋ž˜๋””์–ธํŠธ ๋ˆ„์„คโ€ ๊ธฐ๋ฒ•์œผ๋กœ ํ’€์—ˆ์Šต๋‹ˆ๋‹ค. ์†์ด ์•„์ง ๋‹ฟ์ง€ ์•Š์€ ์ ‘์ด‰ ํ›„๋ณด ์ง€์ ๋“ค์— ๋Œ€ํ•ด์„œ๋„ ๋ฏธ์•ฝํ•˜์ง€๋งŒ ๋ฐฉํ–ฅ์„ฑ์„ ๊ฐ€์ง„ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์›๋ž˜๋Š” \phi(x) \> 0 (์ถฉ๋Œ ์—†์Œ)์ผ ๋•Œ f_n = 0์ด๊ณ  \partial f_n/\partial q_h = 0์ด์–ด์•ผ ํ•˜๋‚˜, Graspโ€™D๋Š” ์ด ๊ฒฝ์šฐ์— ํŽธ๋ฏธ๋ถ„ ๊ฐ’์„ 0์ด ์•„๋‹Œ ์ž‘์€ ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜์—ฌ ์†์ด ๋ฌผ์ฒด๋ฅผ ํ–ฅํ•ด ์›€์ง์ด๋„๋ก ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋”ฅ๋Ÿฌ๋‹์—์„œ ์ž…๋ ฅ์ด 0์ผ ๋•Œ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์‚ฌ๋ผ์ง€๋Š” ReLU ๋Œ€์‹  Leaky ReLU๋ฅผ ์“ฐ๋Š” ๊ฒƒ์— ๋น„์œ ๋˜๋ฉฐ, ์ผ์ข…์˜ โ€œ๊ฐ€์งœ ์‹ ํ˜ธโ€๋ฅผ ํ˜๋ ค๋ณด๋‚ด ์†์ด ์ ‘์ด‰์„ ๋งŒ๋“ค๊ฒŒ ํ•˜๋Š” ํŠธ๋ฆญ์ž…๋‹ˆ๋‹ค. ์ด ๊ธฐ๋ฒ• ๋•๋ถ„์— ์†์ด ์ดˆ๊ธฐ์—” ๋ฌผ์ฒด์— ์•ˆ ๋‹ฟ์•„ ์žˆ๋”๋ผ๋„ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ฌผ์ฒด๋ฅผ ํ–ฅํ•ด ์†์„ ๋ป—๋„๋ก ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (๋ฌผ๋ก  ์ด ๊ทธ๋ž˜๋””์–ธํŠธ๋Š” ์–ด๋””๊นŒ์ง€๋‚˜ ํŽธํ–ฅ๋œ ๊ฐ’์ด๋ฏ€๋กœ, ์‹ค์ œ ์ ‘์ด‰์ด ์ƒ๊ธฐ๋ฉด ์ •์ƒ์ ์ธ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋กœ ๋Œ€์ฒด๋ฉ๋‹ˆ๋‹ค.)

  • (3) ๋Ÿฌ๊ธฐ๋“œ ๋žœ๋“œ์Šค์ผ€์ดํ”„ ๋Œ€์‘: ๋ฌธ์ œ ์™„ํ™”(relaxation) โ€“ ์†์ด ๋ฌผ์ฒด์™€ ์—ฌ๋Ÿฌ ์ ์—์„œ ๋‹ฟ๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด, ์† ์ž์„ธ์˜ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ ์–ด๋–ค ์ ‘์ ์„ ๋งŒ๋“ค๊ฑฐ๋‚˜ ๋Š์–ด๋ฒ„๋ฆฌ๊ณ  ์ ‘์ด‰๋ ฅ ๋ถ„ํฌ๋ฅผ ํฌ๊ฒŒ ๋ฐ”๊พธ์–ด๋ฒ„๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋Ÿฌ๊ธฐ๋“œ(rugged)ํ•œ ์ตœ์ ํ™” ์ง€ํ˜•์—์„œ๋Š” gradient๊ฐ€ ๊ธ‰๋ณ€ํ•˜์—ฌ ์•ˆ์ •์ ์ธ ์ˆ˜๋ ด์ด ์–ด๋ ต์Šต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ์—ฌ๊ธฐ์„œ Contact-Invariant Optimization (CIO)์ด๋ผ๋Š” ์ด์ „ ์—ฐ๊ตฌ ์•„์ด๋””์–ด๋ฅผ ์‘์šฉํ•˜์—ฌ, ์ œ์•ฝ์„ ์™„ํ™”ํ•œ ๋Œ€์•ˆ ๋ฌธ์ œ๋ฅผ ์ตœ์ ํ™”ํ•œ ํ›„ ๋‹ค์‹œ ์‹ค์ œ ๋ฌธ์ œ๋กœ ๊ฐ€์ ธ์˜ค๋Š” ๋ฐฉ์‹์„ ์ทจํ–ˆ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ์€, ์†์ด ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ ‘์ด‰๋ ฅ์„ ์ง์ ‘ ์ตœ์ ํ™” ๋ณ€์ˆ˜๋กœ ๋„์ž…ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ฆ‰ ์›๋ž˜ ๋ฌธ์ œ๋Š” โ€œ์†์˜ ์ž์„ธ q_h๋ฅผ ์ฐพ์•„์„œ ๋ฌผ์ฒด๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์žก์•„๋ผโ€์ธ๋ฐ, ์ด๋ฅผ โ€œ์–ด๋–ค ์ ‘์ด‰ force ๋ถ„ํฌ \mathbf{f}_c๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋ฉด ๋ฌผ์ฒด๋ฅผ ์žก์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ธ๊ฐ€โ€์™€ โ€œ๊ทธ force๋ฅผ ์‹ค์ œ๋กœ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ๋Š” ์† ์ž์„ธ q_h๋Š” ๋ฌด์—‡์ธ๊ฐ€โ€๋ผ๋Š” ๋‘ ํ•˜์œ„ ๋ฌธ์ œ๋กœ ์ชผ๊ฐญ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์†์˜ ์ ‘์ด‰์ ๋งˆ๋‹ค ๊ฐ€์ƒ์˜ ํฌ๋ง ์ ‘์ด‰๋ ฅ \mathbf{f}_c^d (desired contact force)๋ฅผ ๋ณ€์ˆ˜๋กœ ๋‘ก๋‹ˆ๋‹ค.

    • ์ฒซ ๋ฒˆ์งธ ํ•˜์œ„ ๋ชฉ์  L_{\text{task}}(\mathbf{f}*c^d)๋Š” ์ด ๊ฐ€์ƒ์˜ ํž˜๋“ค์ด ๋ฌผ์ฒด์˜ ์ดˆ๊ธฐ ์›€์ง์ž„์„ ์ž˜ ๋ง‰์•„๋‚ด๋Š”์ง€๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์•ž์„œ ์ •์˜ํ•œ L*}}์™€ ๊ฑฐ์˜ ๋™์ผํ•˜์ง€๋งŒ, ์‹ค์ œ ์†์ด ์ฃผ๋Š” ํž˜ ๋Œ€์‹  ์ด์ƒ์ ์ธ \mathbf{f*c^d๋ฅผ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•œ ๊ณผ์ œ ์ˆ˜ํ–‰ ์˜ค์ฐจ๋ผ๊ณ  ๋ณด๋ฉด ๋ฉ๋‹ˆ๋‹ค.
    • ๋‘ ๋ฒˆ์งธ ๋ชฉ์  L*_c^d์™€ ๋˜‘๊ฐ™์€ ํž˜์„ ๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋ฉด ์ด ๊ฐ’์€ 0์ด ๋  ๊ฒƒ์ด๊ณ , ์†๊ฐ€๋ฝ ์œ„์น˜๊ฐ€ ๊ทธ ํž˜๋“ค์„ ๋ชป ๋งŒ๋“ค์–ด๋‚ด๋ฉด ์ฐจ์ด๊ฐ€ ์ปค์ง‘๋‹ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ Graspโ€™D๋Š” }}(q_h, c^d)$๋Š” ํ˜„์žฌ ์† ์ž์„ธ q_h์—์„œ ์‹ค์ œ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ ‘์ด‰๋ ฅ ๋ถ„ํฌ์™€ \mathbf{f}_c^d์˜ ์ฐจ์ด๋ฅผ ์žฌ๋Š” ๊ฐ’์ž…๋‹ˆ๋‹ค. ์†์ด \mathbf{f**L{} + L_{}$**๋ผ๋Š” ๋ณตํ•ฉ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋„๋ก ์„ค์ •๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ํ•˜๋ฉด ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ํ•œํŽธ์œผ๋กœ๋Š” ๋ฌผ์ฒด๋ฅผ ๋ถ™์žก๋Š” ๋ฐ ์ถฉ๋ถ„ํ•œ (๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋Šฅํ•œ ํ•œ ์ž‘์€) ํž˜ \mathbf{f}_c^d๋ฅผ ์ฐพ์•„๋‚ด๊ณ , ๋™์‹œ์— ๊ทธ ํž˜์„ ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ์†๊ฐ€๋ฝ๋“ค์„ ์›€์ง์ด๋Š” ๊ท ํ˜•์„ ์ด๋ฃจ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ง๊ด€์ ์œผ๋กœ, ์†์ด ๋ฌผ์ฒด๋ฅผ ์™„๋ฒฝํžˆ ์žก๊ณ  ์žˆ๋‹ค๋ฉด \mathbf{f}_c^d์™€ ์‹ค์ œ ์ ‘์ด‰๋ ฅ์ด ์ผ์น˜ํ•˜์—ฌ ๋‘ ํ•ญ์ด ๋ชจ๋‘ 0์— ๊ฐ€๊นŒ์›Œ์งˆ ๊ฒƒ์ด๊ณ , ์†์ด ์•„์ง ๋œ ์žกํ˜”์„ ๋• \mathbf{f}_c^d๋ฅผ ๋” ํ‚ค์šฐ๊ฑฐ๋‚˜ ์† ์ž์„ธ๋ฅผ ๋ฐ”๊ฟ”์•ผ ๋‘ ๊ฐ’์„ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
    • ์ด๋ ‡๊ฒŒ ๋ฌผ๋ฆฌ์  ์ œ์•ฝ(์ ‘์ด‰ ํž˜์˜ ํ‰ํ˜• ์กฐ๊ฑด ๋“ฑ)์„ ์œ„๋ฐฐํ•˜๋Š” ์ƒํ™ฉ์„ ๋ฒŒ์ (cost)์œผ๋กœ ์ฒ˜๋ฆฌํ•จ์œผ๋กœ์จ, ์ตœ์ ํ™”๊ฐ€ ์ข€ ๋” ๊ด€๋Œ€ํ•˜๊ฒŒ ์ง„ํ–‰๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒ˜์Œ์—” ์†์ด ์ถฉ๋ถ„ํžˆ ์•ˆ ์žก๊ณ  ์žˆ์–ด๋„ ๊ฐ€์ƒ์˜ ํž˜์„ ํ‚ค์šฐ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ•ด๋ฒ•์„ ์ฐพ๊ณ , ๊ทธ ํž˜์„ ๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ์†์„ ๋”ฐ๋ผ ์›€์ง์ด๋Š” ์‹์ž…๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์— ๊ฐ€์„œ๋Š” \mathbf{f}_c^d๊ฐ€ ์‹ค์ œ ์†์˜ ํž˜๊ณผ ์ผ์น˜ํ•˜๋ฉด์„œ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์œ ํšจํ•œ ํŒŒ์ง€๋กœ ์ˆ˜๋ ดํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. Graspโ€™D ์‹คํ—˜ ๊ฒฐ๊ณผ ์ด ์™„ํ™”๊ธฐ๋ฒ•(problem relaxation)์„ ์“ฐ๋Š” ๊ฒƒ์ด ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๋งค์šฐ ์ค‘์š”ํ–ˆ๊ณ , ๋งŒ์•ฝ ์ด ๋ถ€๋ถ„์„ ์ƒ๋žตํ•˜๋ฉด ์ตœ์ ํ™”๊ฐ€ ๊ฑฐ์˜ ์‹คํŒจํ•˜๋ฉฐ ์ ‘์ด‰ ๋ฉด์ ์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์—ด์•…ํ•œ ํŒŒ์ง€๋“ค์ด ๋‚˜์™”๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋งŒํผ ๋ณต์žกํ•œ ์ ‘์ด‰ ๋ฌธ์ œ์—์„œ๋Š” ํ•ด๋ฅผ ์„œ์„œํžˆ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฆฌ ์—ญํ• ์ด ํ•„์š”ํ–ˆ๊ณ , Graspโ€™D๋Š” ์ถ”๊ฐ€ ๋ณ€์ˆ˜์™€ ์ฝ”์ŠคํŠธ๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค.

์œ„ ์„ธ ๊ฐ€์ง€ ๊ธฐ๋ฒ•์€ Graspโ€™D์˜ ๋ฏธ๋ถ„๊ฐ€๋Šฅ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‹ค์šฉํ™”ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ ํ•ต์‹ฌ ์š”์†Œ๋“ค์ž…๋‹ˆ๋‹ค. ๋•๋ถ„์— Graspโ€™D๋Š” ์ ‘์ด‰ ์ง€ํ˜•์˜ ๋ถˆ์—ฐ์†์„ฑ, ์ดˆ๊ธฐ ์ ‘์ด‰ ๋ถ€์žฌ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘์ ‘์ ์œผ๋กœ ์ธํ•œ ๋ถˆ์•ˆ์ • ๊ธฐ์šธ๊ธฐ ๋ฌธ์ œ๋ฅผ ๋ชจ๋‘ ๊ทน๋ณตํ•˜๊ณ  ์•ˆ์ •์ ์ธ ์ˆ˜๋ ด์„ ์ด๋ค„๋‚ผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์‹ค์ œ ์ตœ์ ํ™”๋Š” ์ˆ˜๋ฐฑ ํšŒ์˜ iteration์œผ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ์ ์ฐจ L_{\text{task}}์™€ L_{\text{phys}} ๊ฐ’์ด ๋ชจ๋‘ ๊ฐ์†Œํ•˜๋ฉด์„œ ์†๊ฐ€๋ฝ๋“ค์ด ๋ฌผ์ฒด๋ฅผ ๋‹จ๋‹จํžˆ ์›€์ผœ์ฅ๋Š” ๋ชจ์–‘์ƒˆ๋กœ ๋ณ€ํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์–ป์–ด์ง„ ์† ์ž์„ธ q_h๊ฐ€ ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ์ฐพ๋Š” ์ ‘์ด‰์ด ํ’๋ถ€ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ํŒŒ์ง€์ž…๋‹ˆ๋‹ค.

์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๋น„๊ต ํ‰๊ฐ€

Graspโ€™D์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋“ค์€ ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ์„  ์ธ๊ฐ„ ์† ๋ชจ๋ธ์— ํ•ด๋‹นํ•˜๋Š” MANO ๋ชจ๋ธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ShapeNet ๋ฐ์ดํ„ฐ์…‹์˜ 57๊ฐœ ๋ฌผ์ฒด์— ๋Œ€ํ•ด ํŒŒ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฌผ์ฒด๋“ค์€ ๋ณ‘(bottle), ๊ทธ๋ฆ‡(bowl), ์นด๋ฉ”๋ผ, ์บ”, ํœด๋Œ€ํฐ, ๋‹จ์ง€(jar), ์นผ, ๋ฆฌ๋ชจ์ปจ ๋“ฑ 8๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ ๋‹ค์–‘ํ•˜๊ฒŒ ํฌํ•จ๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ ๋ฌผ์ฒด์— ๋Œ€ํ•ด Graspโ€™D๋ฅผ ์ด์šฉํ•ด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŒŒ์ง€ ์ž์„ธ๋ฅผ ์ƒ์„ฑํ•œ ํ›„ ํ’ˆ์งˆ ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋กœ๋ด‡ ์† ๋ชจ๋ธ๋กœ๋Š” ๋Œ€ํ‘œ์ ์ธ 4์†๊ฐ€๋ฝ ๋กœ๋ด‡ ํ•ธ๋“œ์ธ ์•Œ๋ ˆ๊ทธ๋กœ ํ•ธ๋“œ(Allegro hand)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋™์ผํ•œ ๊ณผ์ •์„ ๊ฑฐ์ณค์Šต๋‹ˆ๋‹ค. ๋น„๊ต ๋Œ€์ƒ ๊ธฐ์ค€ ๋ฐฉ๋ฒ•(baseline)์œผ๋กœ๋Š”, ์•ž์„œ ์–ธ๊ธ‰ํ•œ ํ•ด์„์  ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ ํŒŒ์ง€ ํ•ฉ์„ฑ์˜ ์˜ˆ๋กœ GraspIt! EigengraspPlanner๋ฅผ ํ†ตํ•œ ๊ฒฐ๊ณผ๋‚˜, ๊ทธ๊ฒƒ์„ ํ™œ์šฉํ•ด ์ƒ์„ฑ๋œ ํ•ฉ์„ฑ ํŒŒ์ง€ ๋ฐ์ดํ„ฐ์…‹์ธ ObMan ๋“ฑ์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋“ค์€ ์†๊ฐ€๋ฝ ๋ ์œ„์ฃผ์˜ ์ ‘์ด‰๋งŒ ์žˆ๋Š” ํŒŒ์ง€๋“ค๋กœ ๊ฐ„์ฃผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ‰๊ฐ€์ง€ํ‘œ(metrics)๋กœ๋Š” ํŒŒ์ง€๊ฐ€ ๋ฌผ์ฒด์— ์ ‘์ด‰ํ•˜๋Š” ํ‘œ๋ฉด์ (Contact Area, CA), ์†๊ณผ ๋ฌผ์ฒด ๊ฐ„์˜ ๊ต์ฐจ ์นจํˆฌ ๋ถ€ํ”ผ(Intersection Volume, IV), ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์œ„(Simulation Displacement, SD), ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ํ•ด์„์  ์•ˆ์ •์„ฑ ์ง€ํ‘œ (์˜ˆ: ์ž…์‹ค๋ก  ์•ˆ์ •์„ฑ) ๋“ฑ์„ ์ธก์ •ํ–ˆ์Šต๋‹ˆ๋‹ค. Contact Area๋Š” ์† ํ‘œ๋ฉด๊ณผ ๋ฌผ์ฒด ํ‘œ๋ฉด์ด ์ ‘์ด‰ํ•œ ์ด ๋ฉด์ ์œผ๋กœ, ๊ฐ’์ด ํด์ˆ˜๋ก ์†์ด ๋ฌผ์ฒด๋ฅผ ๋„“๊ฒŒ ๊ฐ์‹ธ ์ฅ๊ณ  ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. Intersection Volume์€ ์†์ด ๋ฌผ์ฒด๋ฅผ ๊ฒน์ณ์„œ ํŒŒ๊ณ ๋“  ๋ถ€ํ”ผ๋กœ, ์ด์ƒ์ ์œผ๋กœ 0์ด์–ด์•ผ ํ•˜์ง€๋งŒ ์•ฝ๊ฐ„์˜ ๊ฐ’์€ ํ—ˆ์šฉ๋ฉ๋‹ˆ๋‹ค (๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ‘์ด‰ ๋ฉด์ ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ถˆ๊ฐ€ํ”ผํ•˜๊ฒŒ ์•ฝ๊ฐ„ ์ƒ์Šนํ•˜์ง€๋งŒ, ์ ‘์ด‰๋ฉด์  ๋Œ€๋น„ ์นจํˆฌ๋Ÿ‰์˜ ๋น„์œจ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„์Šทํ•˜๊ฒŒ ์œ ์ง€๋œ๋‹ค๊ณ  ๋ณด๊ณ ํ•ฉ๋‹ˆ๋‹ค). Simulation Displacement๋Š” ์•ž์„œ ์ •์˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์•ˆ์ •์„ฑ ์ง€ํ‘œ๋กœ, ๋ฌผ์ฒด์— ์ž‘์€ ํž˜์„ ๊ฐ€ํ–ˆ์„ ๋•Œ ์–ผ๋งˆ๋‚˜ ์ ๊ฒŒ ์›€์ง์˜€๋Š”์ง€ (์†๋„๊ฐ€ ๋А๋ฆฐ์ง€) ๋‚˜ํƒ€๋‚ด๋ฉฐ ์ž‘์„์ˆ˜๋ก ์•ˆ์ •์ ์ž…๋‹ˆ๋‹ค.

ํ‰๊ฐ€ ๊ฒฐ๊ณผ, Graspโ€™D๋กœ ์ƒ์„ฑ๋œ ํŒŒ์ง€๋“ค์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์••๋„์ ์œผ๋กœ ๋†’์€ ์ ‘์ด‰ ๋ฉด์ ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํ‰๊ท ์ ์œผ๋กœ ์•ฝ 42cmยฒ ์ •๋„์˜ ์ ‘์ด‰ ๋ฉด์ ์„ ๊ธฐ๋กํ–ˆ๋Š”๋ฐ, ์ด๋Š” ๊ธฐ์กด ํ•ด์„์  ๋ฐฉ๋ฒ•์œผ๋กœ ์–ป์€ ํŒŒ์ง€(์•ฝ 20cmยฒ)๋ณด๋‹ค 4๋ฐฐ ์ด์ƒ ๋„“์€ ์ ‘์ด‰์„ ์ด๋ฃจ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ํ‘œ์—์„œ ๋ณด๋“ฏ ObMan ๋ฐ์ดํ„ฐ์…‹์˜ ์ƒ์œ„ ํŒŒ์ง€๋“ค๊ณผ ๋น„๊ตํ•ด๋„ 4๋ฐฐ ๊ฐ€๊นŒ์šด ์ ‘์ด‰ ์ฆ๊ฐ€์ด๋ฉฐ, ์ด๋Š” ์ธ๊ฐ„์ด ๋ฌผ์ฒด๋ฅผ ์ฅ˜ ๋•Œ ์†๋ฐ”๋‹ฅ๊ณผ ์†๊ฐ€๋ฝ์œผ๋กœ ๋„“๊ฒŒ ๊ฐ์‹ธ๋Š” ๋ฉด์ ์— ์ƒ๋‹นํžˆ ๊ทผ์ ‘ํ•œ ์ˆ˜์น˜์ž…๋‹ˆ๋‹ค. ์ ‘์ด‰์ด ๋Š˜์–ด๋‚œ ๋งŒํผ ํŒŒ์ง€์˜ ์•ˆ์ •์„ฑ๋„ ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์œ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ณด๋ฉด Graspโ€™D ํŒŒ์ง€๋Š” ๊ธฐ์กด ๋Œ€๋น„ 4๋ฐฐ ์ด์ƒ ์ž‘์€ ๋ฌผ์ฒด ์›€์ง์ž„์„ ๋ณด์—ฌ, ํ›จ์”ฌ ๊ฒฌ๊ณ ํ•˜๊ฒŒ ๋ฌผ์ฒด๋ฅผ ๋ถ™์žก๊ณ  ์žˆ์Œ์„ ๋‚˜ํƒ€๋ƒˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ํ•ด์„์ ์ธ ์•ˆ์ •์„ฑ ์ง€ํ‘œ(์˜ˆ: epsilon metric)๋กœ ํ‰๊ฐ€ํ•˜๋ฉด ํ–ฅ์ƒํญ์ด ๋‹ค์†Œ ์™„๋งŒํ–ˆ๋Š”๋ฐ, ์ด๋Š” ์ด๋“ค ์ง€ํ‘œ๊ฐ€ ์†๊ฐ€๋ฝ ๋ ์œ„์ฃผ์˜ ํž˜ ๋ฐฐ๋ถ„์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด ๋„“์€ ์ ‘์ด‰์˜ ์ด์ ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ํ•ด์„๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  Graspโ€™D ํŒŒ์ง€์˜ ์ ˆ๋Œ€์ ์ธ ์•ˆ์ •์„ฑ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ์„ ํ†ตํ•ด ๋ช…ํ™•ํžˆ ์šฐ์ˆ˜ํ•จ์ด ๋“œ๋Ÿฌ๋‚ฌ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์†๊ฐ€๋ฝ ๋๋งŒ ์‚ด์ง ๊ฑธ์นœ ํŒŒ์ง€๋Š” ์ž‘์€ ์ถฉ๊ฒฉ์—๋„ ๋ฌผ์ฒด๊ฐ€ ์‰ฝ๊ฒŒ ์›€์ง์˜€์ง€๋งŒ, Graspโ€™D ํŒŒ์ง€๋Š” ์†๋ฐ”๋‹ฅ ์ „์ฒด๋กœ ๋ˆ„๋ฅด๊ณ  ์žˆ์–ด ์›ฌ๋งŒํ•œ ํ”๋“ค๋ฆผ์—๋„ ๋ฌผ์ฒด๊ฐ€ ๋ฏธ๋™ ์—†์ด ๊ณ ์ •๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Qualitative (์ •์„ฑ์ )ํ•œ ๋ฉด์—์„œ๋„ Graspโ€™D์˜ ์šฐ์ˆ˜ํ•จ์ด ๊ด€์ฐฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ธ๊ฐ„ ์† ๋ชจํ˜•์œผ๋กœ ์ƒ์„ฑ๋œ ํŒŒ์ง€ ์ž์„ธ๋“ค์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋น„๊ตํ•ด ๋ณด๋ฉด, ๊ธฐ์กด ๋ฐฉ๋ฒ•์€ ์ข…์ข… ๋ถ€์ž์—ฐ์Šค๋Ÿฝ๊ฑฐ๋‚˜ ๋ถˆ์•ˆ์ •ํ•ด ๋ณด์ด๋Š” ์ž์„ธ(์˜ˆ: ์†๊ฐ€๋ฝ์ด ํ—ˆ๊ณต์„ ํ–ฅํ•ด ์ž”๋œฉ ๋ฒŒ์–ด์ง€๊ฑฐ๋‚˜ ๋ฌผ์ฒด ๋ชจ์–‘๊ณผ ๋งž์ง€ ์•Š๊ฒŒ ๊บพ์ธ ์ž์„ธ)๊ฐ€ ๋‚˜์™”์ง€๋งŒ, Graspโ€™D ๊ฒฐ๊ณผ๋Š” ๋งˆ์น˜ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ฅ” ๊ฒƒ์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋ฌผ์ฒด๋ฅผ ๊ฐ์‹ธ๋Š” ํ˜•ํƒœ๊ฐ€ ๋งŽ์•˜์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๊ณ ์ ‘์ด‰ ํŒŒ์›Œ๊ทธ๋ฆฝ์˜ ๊ฒฝ์šฐ, ์†๋ฐ”๋‹ฅ๊ณผ ๋ชจ๋“  ์†๊ฐ€๋ฝ ๋งˆ๋””๊ฐ€ ๋ฌผ์ฒด์— ๋ฐ€์ฐฉ๋˜์–ด ์žˆ์–ด ๋ฌผ์ฒด์™€ ์† ์‚ฌ์ด์— ๋นˆ ๊ณต๊ฐ„์ด ๊ฑฐ์˜ ์—†์„ ์ •๋„๋กœ ํŒŒ์ง€๊ฐ€ ์ด๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ์Šต์€ ์ธ์ฒด๊ณตํ•™์ ์œผ๋กœ๋„ ๋” ํƒ€๋‹นํ•˜๋ฉฐ, ๋กœ๋ด‡ ํ•ธ๋“œ๋กœ ๊ตฌํ˜„ํ•  ๊ฒฝ์šฐ ๋ฌผ์ฒด๋ฅผ ๋†“์น  ์œ„ํ—˜์„ ์ค„์—ฌ์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋ฉ๋‹ˆ๋‹ค.

์ถ”๊ฐ€ ์‹คํ—˜์œผ๋กœ, Graspโ€™D๊ฐ€ ์™„์ „ํžˆ ์ฒ˜์Œ ๋ณด๋Š” ๋ฌผ์ฒด์— ๋Œ€ํ•ด์„œ๋„ ์ž˜ ์ž‘๋™ํ•˜๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด RGB-D ์นด๋ฉ”๋ผ ์ž…๋ ฅ๋งŒ์œผ๋กœ ์–ป์€ 3D ๋ณต์› ๋ชจ๋ธ์— ํŒŒ์ง€ ํ•ฉ์„ฑ์„ ์‹œ๋„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. YCB ๋ฌผ์ฒด ๋ฐ์ดํ„ฐ์…‹์˜ ์ผ๋ถ€ ๋ฌผ์ฒด๋“ค์„ ์—ฌ๋Ÿฌ ๊ฐ๋„์—์„œ RGB-D๋กœ ์Šค์บ”ํ•˜์—ฌ 3D ๋ฉ”์‰ฌ๋ฅผ ๋ณต์›ํ•œ ํ›„ (๋…ธ์ด์ฆˆ์™€ ๋ถˆ์™„์ „ํ•จ์ด ์žˆ์Œ) ํ•ด๋‹น ๋ฉ”์‰ฌ์— ๋Œ€ํ•ด Graspโ€™D๋ฅผ ์ ์šฉํ•ด ๋ณธ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์™„๋ฒฝํ•œ CAD ๋ชจ๋ธ์ด ์•„๋‹์ง€๋ผ๋„ ๋Œ€๋ถ€๋ถ„์˜ ๋ฌผ์ฒด์— ๋Œ€ํ•ด ๊ทธ๋Ÿด๋“ฏํ•œ ์ธ๊ฐ„ ํŒŒ์ง€ ์ž์„ธ๋ฅผ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ฌผ๋ก  ๋ณต์› ์˜ค์ฐจ๋กœ ์ธํ•ด ์ด์ƒ์ ์ธ ๊ฒฝ์šฐ๋ณด๋‹ค ํŒŒ์ง€ ํ’ˆ์งˆ์ด ์•ฝ๊ฐ„ ๋–จ์–ด์ง€๊ฑฐ๋‚˜, ๊ฐ„ํ˜น ๊ทธ๋ฆฝ์ด ์‹คํŒจํ•˜๋Š” ์ผ€์ด์Šค๋„ ์žˆ์—ˆ์ง€๋งŒ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ฆ๊ฑฐ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” Graspโ€™D ์ ‘๊ทผ์ด ์žฅ๊ธฐ์ ์œผ๋กœ๋Š” ์นด๋ฉ”๋ผ๋กœ ๋ฌผ์ฒด๋ฅผ ์ธ์‹ํ•œ ๋’ค ๊ณง๋ฐ”๋กœ ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ๋น„์ „-ํŒŒ์ง€ ํ†ตํ•ฉ ์‹œ์Šคํ…œ์œผ๋กœ๋„ ํ™•์žฅ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. (ํ˜„์žฌ๋Š” ํ•œ ๊ฐœ ํŒŒ์ง€์— ์ˆ˜ ๋ถ„์ด ์†Œ์š”๋˜์–ด ์‹ค์‹œ๊ฐ„ ์ ์šฉ์€ ์–ด๋ ค์šฐ๋‚˜, ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์†๋„ ํ–ฅ์ƒ๊ณผ ์•”์‹œ์  ํ‘œํ˜„ ๊ฐœ์„  ๋“ฑ์ด ์ด๋ฃจ์–ด์ง„๋‹ค๋ฉด ๊ฐ€๋Šฅํ•ด์งˆ ๊ฒƒ์ด๋ผ๊ณ  ์ „๋งํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.)

๋งˆ์ง€๋ง‰์œผ๋กœ Graspโ€™D ๋…ผ๋ฌธ์€ ๊ธฐ์ˆ ํ•œ ์„ธ๋ถ€ ๊ธฐ๋ฒ•๋“ค์˜ ์œ ํšจ์„ฑ์„ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ ์–ด๋ธ”๋ ˆ์ด์…˜ ์Šคํ„ฐ๋””(ablation study)๋„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์•ž์„œ ์†Œ๊ฐœํ•œ (1) SDF ์ฝ”์Šค-ํˆฌ-ํŒŒ์ธ ์ถฉ๋Œ์™„ํ™”, (2) ๋ˆ„์„ค ๊ทธ๋ž˜๋””์–ธํŠธ, (3) ์ ‘์ด‰ ํž˜ ์™„ํ™” ๊ธฐ๋ฒ•์„ ๊ฐ๊ฐ ์ œ๊ฑฐํ•˜๊ฑฐ๋‚˜ ๋ณ€ํ˜•ํ•˜์—ฌ ์ตœ์ ํ™”๋ฅผ ํ•ด๋ณธ ๊ฒฐ๊ณผ, ์ด ์š”์†Œ๋“ค์ด ์—†์œผ๋ฉด ์„ฑ๋Šฅ์ด ํฐ ํญ์œผ๋กœ ์•…ํ™”๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๊ทธ๋ž˜๋””์–ธํŠธ ๋ˆ„์„ค์„ ์“ฐ์ง€ ์•Š๊ณ  ์ˆœ์ˆ˜ํ•˜๊ฒŒ ์ ‘์ด‰์‹œ ๋ฐœ์ƒํ•˜๋Š” ๊ทธ๋ž˜๋””์–ธํŠธ๋งŒ์œผ๋กœ ์†์„ ์›€์ง์ด๋ฉด ์ดˆ๊ธฐ์— ์†์ด ์ „ํ˜€ ์›€์ง์ด์ง€ ์•Š์•„ ์‹คํŒจํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•˜๊ณ , ๋ฌธ์ œ ์™„ํ™”๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด ์šด ์ข‹๊ฒŒ ์žก์„ ์ˆ˜ ์žˆ๋Š” ํŒŒ์ง€๋งŒ ์ฐพ์•„๋‚ด๊ณ  ๋งŽ์€ ๊ฒฝ์šฐ์— ๊ตญ์ง€ํ•ด(local minima)์— ๋จธ๋ฌด๋ฅด๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค. ์ด๋Š” Graspโ€™D ์„ค๊ณ„์— ํฌํ•จ๋œ ๊ธฐ๋ฒ•๋“ค์ด ์„œ๋กœ ๋งž๋ฌผ๋ ค ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๋ณต์žกํ•œ ์ ‘์ด‰ ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ๊ฐ ๊ตฌ์„ฑ์š”์†Œ์˜ ์—ญํ• ์ด ์ค‘์š”ํ•จ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

๊ตฌํ˜„ ๊ด€๋ จ ๊ณ ๋ ค์‚ฌํ•ญ (์ดˆ๊ธฐํ™” ์ „๋žต, ํšจ์œจ์„ฑ, ์ผ๋ฐ˜ํ™” ๋“ฑ)

Graspโ€™D๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์—๋Š” ๋ช‡ ๊ฐ€์ง€ ์‹ค์šฉ์ ์ธ ๊ณ ๋ ค์‚ฌํ•ญ์ด ๋”ฐ๋ฆ…๋‹ˆ๋‹ค. ์ฒซ์งธ, ์ดˆ๊ธฐํ™” ์ „๋žต์ž…๋‹ˆ๋‹ค. ์ตœ์ ํ™”์˜ ์‹œ์ž‘์ ์ธ ์†์˜ ์ดˆ๊ธฐ ์ž์„ธ q_h(0)์— ๋”ฐ๋ผ ์ตœ์ข… ๊ฒฐ๊ณผ ํŒŒ์ง€๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค์–‘ํ•œ ํŒŒ์ง€๋ฅผ ์–ป๊ณ ์ž ํ•œ๋‹ค๋ฉด ์ดˆ๊ธฐ ์ž์„ธ๋ฅผ ์—ฌ๋Ÿฌ ๋ฒˆ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ์ตœ์ ํ™”๋ฅผ ๋ฐ˜๋ณตํ•˜๋Š” ๊ฒƒ์ด ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋„ ์†์˜ ์‹œ์ž‘ ์œ„์น˜์™€ ์ž์„ธ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋‹ฌ๋ฆฌํ•˜์—ฌ top-1, top-2, ... ์‹์œผ๋กœ ์—ฌ๋Ÿฌ ํŒŒ์ง€ ํ›„๋ณด๋ฅผ ์ƒ์„ฑํ•œ ๋’ค, ๊ทธ ์ค‘ ํ’ˆ์งˆ์ด ๊ฐ€์žฅ ๋†’์€ ๊ฒƒ์„ ์„ ํƒํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅด๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์ดˆ๊ธฐ ์† ์œ„์น˜๊ฐ€ ๋ฌผ์ฒด์™€ ์™„์ „ํžˆ ๋–จ์–ด์ ธ ์žˆ์œผ๋ฉด ์ตœ์ ํ™”๊ฐ€ ์ง„ํ–‰์ด ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๋ฌผ์ฒด ์ค‘์‹ฌ ๊ทผ์ฒ˜์— ์†์ด ์˜ค๋„๋ก ๋ฐฐ์น˜ํ•˜๊ณ  ์†๊ฐ€๋ฝ์€ ํŽธํ•˜๊ฒŒ ํŽผ์นœ ์ƒํƒœ๋กœ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค. Graspโ€™D๋Š” ๋ฌผ์ฒด ํ‘œ๋ฉด์„ ํŒจ๋”ฉํ•œ ๋ฒ„์ „์œผ๋กœ ์‹œ์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ผ๋ถ€๋Ÿฌ ์ดˆ๊ธฐ ๊ฐ„์„ญ์„ ์ฃผ์–ด ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์–ป๋Š” ์…ˆ์ธ๋ฐ, ์‚ฌ์šฉ์ž๊ฐ€ ์ดˆ๊ธฐ ์ž์„ธ๋ฅผ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜๊ฒŒ ๋‘์ง€๋งŒ ์•Š์œผ๋ฉด ๋Œ€๋ถ€๋ถ„ ์ˆ˜๋ ดํ•˜์—ฌ ํŒŒ์ง€๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค.

๋‘˜์งธ, ํšจ์œจ์„ฑ๊ณผ ์†๋„ ์ด์Šˆ์ž…๋‹ˆ๋‹ค. ์•ž์„œ ์–ธ๊ธ‰ํ–ˆ๋“ฏ ํ•œ ๋ฒˆ ์ตœ์ ํ™”์— ์ˆ˜ ๋ถ„ ์ •๋„๊ฐ€ ๊ฑธ๋ฆด ๋งŒํผ ๋ฌด๊ฑฐ์šด ์ž‘์—…์ธ๋ฐ, ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด Graspโ€™D๋Š” GPU ๋ณ‘๋ ฌํ™”๋ฅผ ์ ๊ทน ํ™œ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ ์†์˜ ์ˆ˜์ฒœ ๊ฐœ ์ ‘์ด‰ ํ›„๋ณด ์ง€์ ์— ๋Œ€ํ•œ SDF ๊ณ„์‚ฐ๊ณผ ํž˜ ๊ณ„์‚ฐ์„ GPU์—์„œ ๋ณ‘๋ ฌ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ , ์—ฌ๋Ÿฌ ์ดˆ๊ธฐ ์†๋„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—ญ์‹œ ๋ณ‘๋ ฌ๋กœ ๋Œ๋ ค ํ‰๊ท ์„ ๋‚ด๋Š” ๋“ฑ์œผ๋กœ ์ตœ์ ํ™” ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค๊ด€์ ˆ ์†๊ณผ ๋ณต์žกํ•œ ๋ฉ”์‰ฌ์˜ ์กฐํ•ฉ์—์„œ๋Š” ์—ฌ์ „ํžˆ ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋ฏ€๋กœ, ํ–ฅํ›„์—๋Š” ๋” ์ตœ์ ํ™”๋œ ๋ฏธ๋ถ„๊ฐ€๋Šฅ ๋ฌผ๋ฆฌ์—”์ง„์ด๋‚˜ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ฐ€์† ๊ธฐ๋ฒ•๊ณผ์˜ ๊ฒฐํ•ฉ๋„ ๊ณ ๋ คํ•ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ค์ œ ๋…ผ๋ฌธ ์ €์ž๋“ค๋„ Graspโ€™D๋ฅผ ์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ๊ธฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, ์ดํ›„ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ทธ๋ฆฝ ์˜ˆ์ธก๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๋ฐฉํ–ฅ์„ ์ œ์•ˆํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค (์˜ˆ: Graspโ€™D๋กœ ์ƒ์„ฑํ•œ ์–‘์งˆ์˜ ํŒŒ์ง€๋“ค์„ ๋ฐ์ดํ„ฐ๋กœ ๋ชจ์•„์ฃผ๋ฉด, ์ด๋ฅผ ํ•™์Šตํ•œ ๋น„์ „ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๋” ์ •ํ™•ํ•œ ํŒŒ์ง€ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์•„์ด๋””์–ด).

์…‹์งธ, ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์ž…๋‹ˆ๋‹ค. Graspโ€™D๋Š” ๋ณธ์งˆ์ ์œผ๋กœ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜์ด๋ฏ€๋กœ ํŠน์ • ๋ฌผ์ฒด ์ข…๋ฅ˜๋‚˜ ์† ๋ชจ๋ธ์— ํŠนํ™”๋˜์ง€ ์•Š๊ณ  ๋ฒ”์šฉ์ ์ž…๋‹ˆ๋‹ค. ์‹คํ—˜์—์„œ ์ธ๊ฐ„ ์†, ๋กœ๋ด‡ ์† ๋ชจ๋‘ ์„ฑ๊ณต์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๊ณ , ๋ฌผ์ฒด๋„ ์ผ์ƒ ์šฉํ’ˆ๋ถ€ํ„ฐ ๋„๊ตฌ๊นŒ์ง€ ๋‹ค์–‘ํ•˜๊ฒŒ ์ ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋กœ๋ด‡ ์†์ด๋‚˜ ์ƒˆ๋กœ์šด ์žฌ์งˆ์˜ ๋ฌผ์ฒด๋ผ๋„, ํ•ด๋‹น 3D ๋ชจ๋ธ๊ณผ ๋ฌผ๋ฆฌ ํŒŒ๋ผ๋ฏธํ„ฐ(์งˆ๋Ÿ‰, ๋งˆ์ฐฐ ๋“ฑ)๋งŒ ์ •์˜ํ•˜๋ฉด Graspโ€™D๋กœ ํŒŒ์ง€๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ๋ฐ–์—์„œ ์„ฑ๋Šฅ์ด ๋–จ์–ด์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๊ณผ ๋Œ€๋น„๋˜๋Š” ์žฅ์ ์ž…๋‹ˆ๋‹ค. ๋‹ค๋งŒ Graspโ€™D ์—ญ์‹œ ํ•œ๊ณ„๋Š” ์žˆ๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด ์•„์ฃผ ๋ณต์žกํ•œ ๊ธฐ๊ณ„ ๋ถ€ํ’ˆ์ฒ˜๋Ÿผ ์˜ค๋ชฉํ•œ ๊ณณ์ด ๋งŽ์•„ ์†๊ฐ€๋ฝ์ด ๋“ค์–ด๊ฐ€๊ธฐ ์–ด๋ ค์šด ๋ฌผ์ฒด๋‚˜ ๋ณ€ํ˜•๋˜๋Š” ๋ถ€๋“œ๋Ÿฌ์šด ๋ฌผ์ฒด ๋“ฑ์€ ํ˜„์žฌ ๊ฐ€์ •(๊ฐ•์ฒด ๋ฌผ์ฒด, ๊ฐ•์ฒด ๊ด€์ ˆ ์†)์—์„œ ๋ฒ—์–ด๋‚˜๋ฏ€๋กœ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์†๊ฐ€๋ฝ ๋์˜ ์„ผ์„œ๋‚˜ ๋ฏธ๋„๋Ÿผ ๋“ฑ์˜ ๋ฏธ์„ธ ํšจ๊ณผ๋Š” ํฌํ•จ๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ ๋กœ๋ด‡์— ์ ์šฉํ•˜๋ ค๋ฉด ์ด๋Ÿฌํ•œ ์š”์†Œ (์˜ˆ: ์ด‰๊ฐ ์„ผ์„œ ํ™œ์šฉ, ๋™์  ์žฌ์ ‘์ด‰ ๋“ฑ)๋ฅผ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐฉํ–ฅ๋„ ๊ณ ๋ ค๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ์‹ค์ œ ํ•˜๋“œ์›จ์–ด ์ ์šฉ ์ธก๋ฉด์—์„œ, Graspโ€™D๋Š” ์•„์ง ์ง์ ‘์ ์ธ ๋กœ๋ด‡ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜์ง„ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋…ผ๋ฌธ์—์„œ ์ƒ์„ฑํ•œ ํŒŒ์ง€ ์ž์„ธ๋“ค์€ ํ˜„์‹ค์ ์ธ ์ธ๊ฐ„/๋กœ๋ด‡ ์†์˜ ๊ด€์ ˆ ์ œํ•œ์„ ๋ชจ๋‘ ์ค€์ˆ˜ํ•˜๋„๋ก ๋˜์–ด ์žˆ๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฒ€์ฆ๋œ ์•ˆ์ •์„ฑ์„ ๋ณด์ด๋ฏ€๋กœ, ์ถฉ๋ถ„ํžˆ ๋กœ๋ด‡์— ์ด์‹ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ ์—ฐ๊ตฌ์ž๋“ค์€ ์ถ”ํ›„ TriFinger ๊ฐ™์€ ๋กœ๋ด‡ ํ”Œ๋žซํผ์— Graspโ€™D ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋‚ด ์‹ค์ œ ์žก๊ธฐ ์‹คํ—˜์„ ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์–ธ๊ธ‰ํ•˜๋ฉฐ, GPU ๊ฐ€์† ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์‹ค์ œ ๋กœ๋ด‡์œผ๋กœ์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ์„ ๊ธ์ •์ ์œผ๋กœ ๋ณด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ Graspโ€™D์˜ ์ ‘๊ทผ๋ฒ•์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ˜„์‹ค ๊ฐ„์˜ ๊ฒฉ์ฐจ๋ฅผ ์ค„์ด๋Š” ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋กœ๋ด‡ ํ•™์Šต์˜ ํŠธ๋ Œ๋“œ์™€ ๋งž๋ฌผ๋ ค ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ ์ ˆํ•œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๊ณผ ์ถ”๊ฐ€ ์•ˆ์ „์žฅ์น˜๋ฅผ ๋”ํ•œ๋‹ค๋ฉด ํ˜„์‹ค ๋กœ๋ด‡๊ณตํ•™์—์„œ๋„ ์œ ์šฉํ•œ ๋„๊ตฌ๋กœ ํ™œ์šฉ๋  ์ „๋ง์ž…๋‹ˆ๋‹ค.

๋งบ์Œ๋ง

Graspโ€™D๋Š” ๋ฏธ๋ถ„๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋‹ค๊ด€์ ˆ ์† ํŒŒ์ง€ ๋ฌธ์ œ๋ฅผ ์ƒˆ๋กœ์šด ๊ฐ๋„๋กœ ํ•ด๊ฒฐํ•œ ํฅ๋ฏธ๋กœ์šด ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ์ด ์ ‘๊ทผ๋ฒ•์€ ์ „ํ†ต์ ์ธ ํ•ด์„์ /์ƒ˜ํ”Œ๋ง ๋ฐฉ๋ฒ•๋“ค์ด ๊ฐ€์ง€๋˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ์ ‘์ด‰์ด ํ’๋ถ€ํ•˜๋ฉด์„œ๋„ ์•ˆ์ •์ ์ธ ํŒŒ์ง€๋ฅผ ์ž๋™์œผ๋กœ ํ•ฉ์„ฑํ•ด๋‚ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ๋ฒ” ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ๋งˆ์น˜ ๋ฌผ๋ฆฌ ๋ฒ•์น™์„ ์†๊ฐ€๋ฝ ์›€์ง์ž„์˜ ๊ธธ์žก์ด๋กœ ํ™œ์šฉํ•œ ์…ˆ์ธ๋ฐ, ์ด๋Š” ์ถ”์ƒ์ ์ธ ์‹ ๊ฒฝ๋ง ์ถœ๋ ฅ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ  ์ง์ ‘์ ์ธ ๋ฌผ๋ฆฌ ๋ชฉํ‘œ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ๋กœ๋ด‡ ํ•™๊ณ„์— ์‹œ์‚ฌํ•˜๋Š” ๋ฐ”๊ฐ€ ํฝ๋‹ˆ๋‹ค. ๋ฌผ๋ก  ํ˜„์‹ค ์„ธ๊ณ„์˜ ์ ์šฉ๊นŒ์ง€๋Š” ์†๋„์™€ ๋ณต์žก์„ฑ ๋“ฑ์˜ ๊ณผ์ œ๊ฐ€ ๋‚จ์•„ ์žˆ์ง€๋งŒ, ํ˜„์žฌ๋„ ์ˆ˜ ๋ถ„ ๋‚ด์— ๊ณ ํ’ˆ์งˆ ํŒŒ์ง€๋ฅผ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€์ด๋ฏ€๋กœ, ์ธ๊ฐ„์ด ์ผ์ผ์ด ํŒŒ์ง€ ์ž์„ธ๋ฅผ ์„ค๊ณ„ํ•˜๊ฑฐ๋‚˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค ํ•„์š” ์—†์ด ์ž๋™ ํŒŒ์ง€ ์„ค๊ณ„์ž๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Graspโ€™D๊ฐ€ ๋ณด์—ฌ์ค€ ๊ฒฐ๊ณผ โ€“ ์˜ˆ๋ฅผ ๋“ค์–ด ์†๋ฐ”๋‹ฅ ์ „์ฒด๋กœ ๋ฌผ์ฒด๋ฅผ ๊ฐ์‹ธ ์ฅ” ํŒŒ์ง€๋Š” โ€“ ์ธ๊ฐ„ ์ˆ˜์ค€์˜ ํŒŒ์ง€์— ํ•œ ๊ฑธ์Œ ๋” ๋‹ค๊ฐ€์„  ๋ชจ์Šต์œผ๋กœ, ํ–ฅํ›„ ์ด ๊ธฐ๋ฒ•์ด ๋กœ๋ด‡ ์†์˜ ์žก๊ธฐ ๋Šฅ๋ ฅ ํ–ฅ์ƒ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•œ ๋กœ๋ด‡ ํ•™์Šต ๊ณ ์†ํ™” ๋“ฑ์— ๋‹ค์–‘ํ•˜๊ฒŒ ์‘์šฉ๋˜๊ธธ ๊ธฐ๋Œ€ํ•ด๋ด…๋‹ˆ๋‹ค.

Copyright 2026, JungYeon Lee