Curieux.JY
  • JungYeon Lee
  • Post
  • Projects
  • Note

On this page

  • ๐Ÿ” Ping Review
  • ๐Ÿ”” Ring Review
    • 1. ์„œ๋ก : ์™œ ์ด ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ๊ฐ€?
      • 1.1 ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ ํ˜„์ƒ โ€” ํœด๋จธ๋…ธ์ด๋“œ ์‹œ๋Œ€์˜ ๊ฐ€์žฅ ํฐ ์žฅ๋ฒฝ
      • 1.2 ํ•ต์‹ฌ ์งˆ๋ฌธ
    • 2. ๋ฐฐ๊ฒฝ ์ง€์‹: MimicGen์—์„œ DexMimicGen์œผ๋กœ
      • 2.1 MimicGen์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด
      • 2.2 ์™œ MimicGen๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•œ๊ฐ€?
    • 3. DexMimicGen ๋ฐฉ๋ฒ•๋ก : ์„ธ ๊ฐ€์ง€ ์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•
      • 3.1 ์ „์ฒด ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜
      • 3.2 Parallel Subtasks (๋ณ‘๋ ฌ ์„œ๋ธŒํƒœ์Šคํฌ)
      • 3.3 Coordination Subtasks (ํ˜‘์‘ ์„œ๋ธŒํƒœ์Šคํฌ)
      • 3.4 Sequential Subtasks (์ˆœ์ฐจ ์„œ๋ธŒํƒœ์Šคํฌ)
      • 3.5 ์ „์ฒด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์›Œํฌํ”Œ๋กœ์šฐ
    • 4. ์‹œ์Šคํ…œ ์„ค๊ณ„: ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ๊ณผ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜
      • 4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ
      • 4.2 ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ
    • 5. ์‹คํ—˜ ๊ฒฐ๊ณผ: ์ˆซ์ž๊ฐ€ ๋งํ•ด์ฃผ๋Š” ๊ฒƒ
      • 5.1 ํ•ต์‹ฌ ๊ฒฐ๊ณผ ์š”์•ฝ
      • 5.2 ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ์˜ ์˜ํ–ฅ
      • 5.3 Demo-Noise ๋ฒ ์ด์Šค๋ผ์ธ๊ณผ์˜ ๋น„๊ต
      • 5.4 ์ •์ฑ… ์•„ํ‚คํ…์ฒ˜ ๋น„๊ต
      • 5.5 ์‹ค์„ธ๊ณ„ ๋ฐฐํฌ ๊ฒฐ๊ณผ
    • 6. ๊ธฐ์ˆ ์  ์‹ฌ์ธต ๋ถ„์„
      • 6.1 SE(3) ๋“ฑ๋ณ€์„ฑ์˜ ํ™œ์šฉ
      • 6.2 ์†๊ฐ€๋ฝ ๋™์ž‘ ์ฒ˜๋ฆฌ
      • 6.3 ์ œ์–ด๊ธฐ ์„ ํƒ์˜ ์ค‘์š”์„ฑ
    • 7. ๋น„ํŒ์  ๊ณ ์ฐฐ
      • 7.1 ๊ฐ•์ 
      • 7.2 ์•ฝ์  ๋ฐ ํ•œ๊ณ„
      • 7.3 ๊ฐœ์„  ๊ฐ€๋Šฅํ•œ ๋ฐฉํ–ฅ
    • 8. ๊ด€๋ จ ์—ฐ๊ตฌ์™€์˜ ๋น„๊ต
      • 8.1 ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘/์ƒ์„ฑ ๋ฐฉ๋ฒ•๋ก 
      • 8.2 ์–‘ํŒ” ์กฐ์ž‘ ์—ฐ๊ตฌ
    • 9. ์‘์šฉ ๋ฐ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ
      • 9.1 ์‹ค์ œ ๋กœ๋ด‡ ์ ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค
      • 9.2 ํ›„์† ์—ฐ๊ตฌ ๋ฐฉํ–ฅ
      • 9.3 ์˜คํ”ˆ์†Œ์Šค ํ™œ์šฉ ๊ฐ€์ด๋“œ
    • 10. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก 
      • 10.1 ํ•ต์‹ฌ ๊ธฐ์—ฌ ์š”์•ฝ
      • 10.2 ๋กœ๋ด‡๊ณตํ•™์ž๋ฅผ ์œ„ํ•œ ํ…Œ์ดํฌ์–ด์›จ์ด
      • 10.3 ๋ฏธ๋ž˜ ์ „๋ง
    • ์ฐธ๊ณ ๋ฌธํ—Œ
  • โ›๏ธ Dig Review
    • ์„œ๋ก 
    • ๋ฐฉ๋ฒ•
    • ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ
    • ๋น„ํŒ์  ๊ณ ์ฐฐ
    • ์‘์šฉ ๋ฐ ํ™•์žฅ
    • ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก 

๐Ÿ“ƒDexMimicGen ๋ฆฌ๋ทฐ

il
bimanual
dexterity
Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning
Published

December 31, 2025

๐Ÿ” Ping. ๐Ÿ”” Ring. โ›๏ธ Dig. A tiered review series: quick look, key ideas, deep dive.

  • Paper Link
  • Project
  • Code
  1. ๐Ÿค– DexMimicGen์€ ์†Œ์ˆ˜์˜ ์ธ๊ฐ„ ์‹œ์—ฐ์„ ํ™œ์šฉํ•˜์—ฌ bimanual dexterous manipulation์„ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.
  2. ๐Ÿ’ก ์ด ์‹œ์Šคํ…œ์€ MimicGen์„ ํ™•์žฅํ•˜์—ฌ ๋‘ ํŒ”์˜ ๋…๋ฆฝ์ ์ธ ํ‰ํ–‰ subtask, ์ •๋ฐ€ํ•œ ์กฐ์ •์„ ์š”๊ตฌํ•˜๋Š” coordination subtask, ํŠน์ • ์ˆœ์„œ๊ฐ€ ํ•„์š”ํ•œ sequential subtask๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
  3. ๐Ÿš€ DexMimicGen์€ 9๊ฐ€์ง€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ 21K๊ฐœ์˜ ๋ฐ๋ชจ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑํ–ˆ์œผ๋ฉฐ, real-to-sim-to-real ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์‹ค์ œ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์˜ can sorting task์— ์ ์šฉ๋˜์–ด 90%์˜ ์„ฑ๊ณต๋ฅ ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ” Ping Review

๐Ÿ” Ping โ€” A light tap on the surface. Get the gist in seconds.

DexMimicGen์€ ๋ชจ๋ฐฉ ํ•™์Šต(Imitation Learning)์„ ํ†ตํ•ด ๋กœ๋ด‡ ์กฐ์ž‘ ๊ธฐ์ˆ ์„ ๊ฐ€๋ฅด์น˜๋Š” ๋ฐ ์žˆ์–ด, ํŠนํžˆ ๋ฐ”์ด๋งค๋‰ด์–ผ(bimanual) ๋ฐ ์†์žฌ์ฃผ ์žˆ๋Š”(dexterous) ๋กœ๋ด‡์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ํš๋“์˜ ์ฃผ์š” ๋ณ‘๋ชฉ ํ˜„์ƒ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ํœด๋จธ๋…ธ์ด๋“œ์™€ ๊ฐ™์€ ๋ฐ”์ด๋งค๋‰ด์–ผ ๋กœ๋ด‡์€ ๋‘ ํŒ”๊ณผ ๋‹ค์ค‘ ์†๊ฐ€๋ฝ์„ ๋™์‹œ์— ์ œ์–ดํ•˜๊ธฐ ์–ด๋ ค์›Œ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ๋”์šฑ ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์†Œ์ˆ˜์˜ ์ธ๊ฐ„ ์‹œ์—ฐ(demonstrations)์œผ๋กœ๋ถ€ํ„ฐ ๋Œ€๊ทœ๋ชจ์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ํ•ฉ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์ธ DexMimicGen์„ ์†Œ๊ฐœํ•˜๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ์‹์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ์—ฌ:

  • DexMimicGen ์‹œ์Šคํ…œ: ๋ฐ”์ด๋งค๋‰ด์–ผ ๋ฐ ์†์žฌ์ฃผ ์žˆ๋Š” ๋กœ๋ด‡ ์กฐ์ž‘์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์‹œ์Šคํ…œ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋น„๋™๊ธฐ์‹(asynchronous) ํŒ”๋ณ„ ์‹คํ–‰ ์ „๋žต(per-arm execution strategy), ๋™๊ธฐํ™”(synchronization), ์ˆœ์ฐจ์  ์ œ์•ฝ(sequential constraints)๊ณผ ๊ฐ™์€ ํ•ต์‹ฌ ์„ค๊ณ„ ์š”์†Œ๋ฅผ ํฌํ•จํ•˜์—ฌ ๋‹ค์ค‘ ํŒ” ํ˜‘์—…์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
  • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ ๋ฐ ๋ฐ์ดํ„ฐ์…‹: ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ๊ตฌํ˜„์ฒด(embodiment) ์œ ํ˜•์— ๊ฑธ์ณ ์•„ํ™‰ ๊ฐ€์ง€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค. ๋‹จ 60๊ฐœ์˜ ์›๋ณธ ์ธ๊ฐ„ ์‹œ์—ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด ์ž‘์—…๋“ค ์ „๋ฐ˜์— ๊ฑธ์ณ 21,000๊ฐœ์˜ ๋ฐ๋ชจ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐ ์ •์ฑ… ํ•™์Šต ๊ฒฐ์ •์ด ์—์ด์ „ํŠธ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
  • ์‹ค์„ธ๊ณ„ ๋ฐฐํฌ: ์‹ค์„ธ๊ณ„ ์บ” ๋ถ„๋ฅ˜ ์ž‘์—…์— ๋””์ง€ํ„ธ ํŠธ์œˆ(digital twin)์„ ํ™œ์šฉํ•œ Real-to-Sim-to-Real ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌ์ถ•ํ•˜์—ฌ, ์ƒ์„ฑ๋œ ๊ถค์ (trajectories)์„ ์‹ค์„ธ๊ณ„ ๋กœ๋ด‡์— ์ ์šฉํ•˜์—ฌ 90%์˜ ์„ฑ๊ณต๋ฅ ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์›๋ณธ ๋ฐ๋ชจ๋งŒ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ์˜ 0% ์„ฑ๊ณต๋ฅ ๊ณผ ๋Œ€์กฐ์ ์ž…๋‹ˆ๋‹ค.

ํ•ต์‹ฌ ๋ฐฉ๋ฒ•๋ก  (DexMimicGen):

DexMimicGen์€ MimicGen [17]์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€๋งŒ, ๋ฐ”์ด๋งค๋‰ด์–ผ ๋ฐ ์†์žฌ์ฃผ ์žˆ๋Š” ์กฐ์ž‘์˜ ๊ณ ์œ ํ•œ ๋„์ „์„ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค. MimicGen์€ ๋‹จ์ผ ๋กœ๋ด‡ ํŒ”๊ณผ ํ‰ํ–‰ ์ง‘๊ฒŒ(parallel-jaw gripper)์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๊ฐ ์ž‘์—…์„ ์ผ๋ จ์˜ ์„œ๋ธŒํƒœ์Šคํฌ(subtasks)๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ๊ฐ์ฒด ์ค‘์‹ฌ(object-centric) ์ขŒํ‘œ๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ถค์ ์„ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. DexMimicGen์€ MimicGen์˜ ๊ฐ€์ •์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค:

  • (A1) ์•ก์…˜ ๊ณต๊ฐ„(action space) A๋Š” ๊ฐ ๋กœ๋ด‡ ํŒ”์— ๋Œ€ํ•ด ์—”๋“œ ์ดํŽ™ํ„ฐ(end effector) ์ œ์–ด๊ธฐ์™€ ์† ๋™์ž‘ ๋ช…๋ น์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.
  • (A2) ๊ฐ ์ž‘์—…์€ ๊ฐ์ฒด ์ค‘์‹ฌ ์„œ๋ธŒํƒœ์Šคํฌ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • (A3) ๋กœ๋ด‡ ํŒ”์ด ๊ฐ์ฒด์™€ ์ ‘์ด‰ํ•˜๊ธฐ ์ „์— ๊ฐ์ฒด์˜ ์ž์„ธ(pose)๋ฅผ ๊ด€์ฐฐํ•˜๊ฑฐ๋‚˜ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฐ”์ด๋งค๋‰ด์–ผ ํ™˜๊ฒฝ์—์„œ MimicGen์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด DexMimicGen์€ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ๋„์ž…ํ•ฉ๋‹ˆ๋‹ค:

  1. ๋ณ‘๋ ฌ ์„œ๋ธŒํƒœ์Šคํฌ (Parallel Subtasks):
    • ๋‘ ํŒ”์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ž‘๋™ํ•˜์—ฌ ๋‹ค๋ฅธ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ์— ํ•ด๋‹นํ•ฉ๋‹ˆ๋‹ค. (์˜ˆ: ๋‘ ๊ฐœ์˜ ๋‹ค๋ฅธ ๋ฌผ๊ฑด์„ ๋™์‹œ์— ์žก๋Š” ๊ฒฝ์šฐ).
    • DexMimicGen์€ ๊ฐ ํŒ”์— ๋Œ€ํ•ด ๋ณ„๋„์˜ ์„œ๋ธŒํƒœ์Šคํฌ ์‹œํ€€์Šค๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค: S_{a1}^1(o_1), ..., S_{a1}^{M1}(o_{M1}) ๋ฐ S_{a2}^1(o_1), ..., S_{a2}^{M2}(o_{M2}).
    • ๋น„๋™๊ธฐ์‹ ์‹คํ–‰ ์ „๋žต(Asynchronous execution strategy)์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ํŒ”์— ๋Œ€ํ•œ ์•ก์…˜ ํ(action queue)๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ, ๊ฐ ํŒ”์€ ๋ณ‘๋ ฌ๋กœ ์•ก์…˜์„ ๋””ํ(dequeue)ํ•ฉ๋‹ˆ๋‹ค. ํ•œ ํŒ”์˜ ํ๊ฐ€ ๋น„๋ฉด, ๋‹ค์Œ ์„œ๋ธŒํƒœ์Šคํฌ์— ํ•ด๋‹นํ•˜๋Š” ๋ณ€ํ™˜๋œ ์„ธ๊ทธ๋จผํŠธ๋กœ ํ๋ฅผ ์ฑ„์›๋‹ˆ๋‹ค. ์ด ๋ฐฉ์‹์€ ์„œ๋ธŒํƒœ์Šคํฌ ๊ฐ„์˜ ์ •๋ ฌ ์—†์ด๋„ ๋‘ ํŒ”์˜ ์•ก์…˜ ์‹คํ–‰์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
  2. ์กฐ์ • ์„œ๋ธŒํƒœ์Šคํฌ (Coordination Subtasks):
    • ๋‘ ํŒ”์ด ๊ณต์œ ๋œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ •๋ฐ€ํ•œ ํ˜‘์—…์ด ํ•„์š”ํ•œ ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค. (์˜ˆ: ์–‘์†์œผ๋กœ ๋šœ๊ป‘์„ ๋†“๋Š” ๊ฒฝ์šฐ).
    • ๋‘ ํŒ” ๋ชจ๋‘์˜ ๊ถค์ ์ด ๋™์ผํ•œ ๋ณ€ํ™˜(transformation)์œผ๋กœ ์ƒ์„ฑ๋˜๊ณ , ์‹คํ–‰ ์ค‘์— ๋‘ ์—”๋“œ ์ดํŽ™ํ„ฐ ๊ฐ„์˜ ์ƒ๋Œ€์  ์ž์„ธ๊ฐ€ ์›๋ณธ ์‹œ์—ฐ๊ณผ ์ผ์น˜ํ•˜๋„๋ก ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.
    • ๋™๊ธฐํ™” ์ „๋žต(Synchronization strategy): ์›๋ณธ ๋ฐ๋ชจ ์„ธ๋ถ„ํ™” ์‹œ ์กฐ์ • ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ๋™์ผํ•œ ํƒ€์ž„์Šคํ…์—์„œ ๋๋‚˜๋„๋ก ๊ฐ•์ œํ•ฉ๋‹ˆ๋‹ค. ์‹คํ–‰ ์‹œ, ๊ฐ ํŒ”์€ ๋‹ค๋ฅธ ํŒ”์ด ์กฐ์ • ์„œ๋ธŒํƒœ์Šคํฌ์—์„œ ๋‚จ์€ ๋‹จ๊ณ„ ์ˆ˜๊ฐ€ ๊ฐ™์•„์งˆ ๋•Œ๊นŒ์ง€ ๊ธฐ๋‹ค๋ฆฝ๋‹ˆ๋‹ค.
    • ๋ณ€ํ™˜ ์Šคํ‚ด(Transformation schemes):
      • Transform ์Šคํ‚ด: ๊ฐ์ฒด์˜ ํ˜„์žฌ ์ž์„ธ T_{o'i}^W์™€ ํ•ด๋‹น ์›๋ณธ ์„ธ๊ทธ๋จผํŠธ์˜ ๊ฐ์ฒด ์ž์„ธ T_{oi}^W์—์„œ ๊ณ„์‚ฐ๋œ ๋ณ€ํ™˜ ํ–‰๋ ฌ T_{o'i}^W (T_{oi}^W)^{-1}์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
      • Replay ์Šคํ‚ด: ๋ณ€ํ™˜ ์—†์ด ์›๋ณธ ๊ถค์ ์„ ์ง์ ‘ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•ธ๋“œ์˜ค๋ฒ„(handover)์™€ ๊ฐ™์ด ํŠน์ • ์กฐ์ž‘์—์„œ๋Š” ํ‚ค๋„ค๋งˆํ‹ฑ ํ•œ๊ณ„ ๋‚ด์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์žฅํ•˜๋ฏ€๋กœ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.
  3. ์ˆœ์ฐจ์  ์„œ๋ธŒํƒœ์Šคํฌ (Sequential Subtasks):
    • ํŠน์ • ์ˆœ์„œ๋กœ ์™„๋ฃŒ๋˜์–ด์•ผ ํ•˜๋Š” ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค. (์˜ˆ: ํ•œ ์†์œผ๋กœ ๊ณต์„ ๊ทธ๋ฆ‡์— ๋ถ“๊ณ  ๋‹ค๋ฅธ ์†์œผ๋กœ ๊ทธ๋ฆ‡์„ ํŒจ๋“œ๋กœ ์˜ฎ๊ธฐ๋Š” ๊ฒฝ์šฐ).
    • ์ •๋ ฌ ์ œ์•ฝ ๋ฉ”์ปค๋‹ˆ์ฆ˜(Ordering constraint mechanism): ์‚ฌ์ „์— โ€˜pre-subtaskโ€™(์„ ํ–‰ ์„œ๋ธŒํƒœ์Šคํฌ)์™€ โ€˜post-subtaskโ€™(ํ›„ํ–‰ ์„œ๋ธŒํƒœ์Šคํฌ)๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ํ›„ํ–‰ ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ์‹คํ–‰ํ•˜๋Š” ํŒ”์€ ๋‹ค๋ฅธ ํŒ”์˜ ์„ ํ–‰ ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ์™„๋ฃŒ๋  ๋•Œ๊นŒ์ง€ ๊ธฐ๋‹ค๋ฆฌ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์›Œํฌํ”Œ๋กœ์šฐ (IV-D):

  1. ์›๋ณธ ๋ฐ๋ชจ ์„ธ๋ถ„ํ™”(Segmentation): ์ˆ˜๋™์œผ๋กœ ์ •์˜๋œ ํœด๋ฆฌ์Šคํ‹ฑ(heuristics) ๋˜๋Š” ์ธ๊ฐ„ ์ฃผ์„(human annotation)์„ ํ†ตํ•ด ๊ฐ ํŒ”์˜ ์„œ๋ธŒํƒœ์Šคํฌ๋กœ ์›๋ณธ ๋ฐ๋ชจ๋ฅผ ๋ถ„ํ• ํ•ฉ๋‹ˆ๋‹ค.
  2. ์žฅ๋ฉด ๋ฌด์ž‘์œ„ํ™”(Randomization): ์ƒˆ๋กœ์šด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ ์žฅ๋ฉด์ด ๋ฌด์ž‘์œ„ํ™”๋˜๊ณ  ์›๋ณธ ์‹œ์—ฐ์ด ์„ ํƒ๋ฉ๋‹ˆ๋‹ค.
  3. ๊ถค์  ์ƒ์„ฑ ๋ฐ ์‹คํ–‰: ๊ฐ ํŒ”์˜ ๊ฐ ์„œ๋ธŒํƒœ์Šคํฌ์— ๋Œ€ํ•ด ๊ถค์ ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๊ณ  ๋ณ‘๋ ฌ๋กœ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์ฐธ์กฐ ๊ฐ์ฒด(reference object)์˜ ์ž์„ธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ณ€ํ™˜(๊ฐ์ฒด-์ค‘์‹ฌ ๊ถค์  ๋ณ€ํ™˜)์„ ์ ์šฉํ•˜์—ฌ ์›๋ณธ ๊ถค์ ์„ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ์†๊ฐ€๋ฝ ์›€์ง์ž„์€ ์›๋ณธ ๋ฐ๋ชจ์˜ ์†๊ฐ€๋ฝ ๊ด€์ ˆ ์•ก์…˜์„ ์žฌ์ƒํ•˜์—ฌ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
  4. ์„ฑ๊ณต ํ•„ํ„ฐ๋ง: ์ƒ์„ฑ๋œ ๊ฐ ๋ฐ๋ชจ๋Š” ์ž‘์—… ์„ฑ๊ณต ์—ฌ๋ถ€๊ฐ€ ํ™•์ธ๋˜๋ฉฐ, ์„ฑ๊ณตํ•œ ๋ฐ๋ชจ๋งŒ ๋ฐ์ดํ„ฐ์…‹์— ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.

์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ:

  • ์„ฑ๋Šฅ ํ–ฅ์ƒ: DexMimicGen์œผ๋กœ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ›ˆ๋ จ๋œ ๋กœ๋ด‡์€ ์†Œ์ˆ˜์˜ ์›๋ณธ ๋ฐ์ดํ„ฐ์…‹๋งŒ์œผ๋กœ ํ›ˆ๋ จ๋œ ๋กœ๋ด‡๋ณด๋‹ค ๋ชจ๋“  ์ž‘์—…์—์„œ ์ •์ฑ… ์„ฑ๊ณต๋ฅ ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค (์˜ˆ: Drawer Cleanup 0.7%์—์„œ 76.0%๋กœ, Threading 1.3%์—์„œ 69.3%๋กœ).
  • ๋‹ค์–‘ํ•œ ์ดˆ๊ธฐ ์ƒํƒœ ๋ถ„ํฌ: DexMimicGen์€ ์›๋ณธ ๋ฐ๋ชจ์˜ ์ดˆ๊ธฐ ๋ถ„ํฌ(D0)์—์„œ ๋” ๋„“์€ ์ดˆ๊ธฐ ์ƒํƒœ ๋ถ„ํฌ(D1, D2)๋ฅผ ๊ฐ€์ง„ ๋ฐ์ดํ„ฐ์…‹์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ›ˆ๋ จ๋œ ์ •์ฑ…์€ ์ƒˆ๋กœ์šด ๋ถ„ํฌ์—์„œ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์ „๋žต ๋น„๊ต:
    • Demo-Noise vs. DexMimicGen: ์›๋ณธ ๋ฐ๋ชจ์— ์•ก์…˜ ๋…ธ์ด์ฆˆ(action noise)๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” Demo-Noise baseline๋ณด๋‹ค DexMimicGen์ด 58% ์ด์ƒ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. Demo-Noise๋Š” ์›๋ณธ ๋ฐ๋ชจ์˜ ์ดˆ๊ธฐ ๊ตฌ์„ฑ๋งŒ ์žฌ์ƒํ•  ์ˆ˜ ์žˆ์–ด ์ƒˆ๋กœ์šด ์ดˆ๊ธฐ ๊ตฌ์„ฑ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
    • Replay vs. Transform (์กฐ์ • ์„œ๋ธŒํƒœ์Šคํฌ): ํ•ธ๋“œ์˜ค๋ฒ„(handover) ์ž‘์—…์—์„œ๋Š” Replay ์Šคํ‚ด์ด ๋” ๋‚˜์€ ์ •์ฑ… ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค (Transport: 63.3% vs 46.0%). Can Sorting์—์„œ๋Š” ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค (97.3% vs 98.6%).
    • ์ •๋ ฌ ์ œ์•ฝ(Ordering Constraints) ์œ ๋ฌด (์ˆœ์ฐจ ์„œ๋ธŒํƒœ์Šคํฌ): ์ •๋ ฌ ์ œ์•ฝ๊ณผ ํ•จ๊ป˜ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋กœ ํ›ˆ๋ จํ•œ ๊ฒฝ์šฐ, ์ œ์•ฝ ์—†์ด ํ›ˆ๋ จํ•œ ๊ฒฝ์šฐ๋ณด๋‹ค ์ผ๊ด€๋˜๊ฒŒ ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ–ˆ์Šต๋‹ˆ๋‹ค (Drawer Cleanup: 50.7% vs 48.0%, Pouring: 88.7% vs 76.7%).
  • ์ •์ฑ… ์•„ํ‚คํ…์ฒ˜ ๋น„๊ต: Diffusion Policy [54]๊ฐ€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋‹ค๋ฅธ ์•„ํ‚คํ…์ฒ˜(BC-RNN-GMM [1], BC-RNN [1])๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.

๊ฒฐ๋ก ์ ์œผ๋กœ, DexMimicGen์€ ๋ฐ”์ด๋งค๋‰ด์–ผ ๋ฐ ์†์žฌ์ฃผ ์žˆ๋Š” ๋กœ๋ด‡ ์กฐ์ž‘์„ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹ ์ƒ์„ฑ์„ ์ž๋™ํ™”ํ•˜์—ฌ, ๋ชจ๋ฐฉ ํ•™์Šต์˜ ํšจ์œจ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์‹ค์„ธ๊ณ„ ๋กœ๋ด‡์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฐ•๋ ฅํ•œ ์ •์ฑ… ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ํ–ฅํ›„ ์ด ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ค‘์š”ํ•œ ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ”” Ring Review

๐Ÿ”” Ring โ€” An idea that echoes. Grasp the core and its value.

1. ์„œ๋ก : ์™œ ์ด ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ๊ฐ€?

1.1 ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ ํ˜„์ƒ โ€” ํœด๋จธ๋…ธ์ด๋“œ ์‹œ๋Œ€์˜ ๊ฐ€์žฅ ํฐ ์žฅ๋ฒฝ

์—ฌ๋Ÿฌ๋ถ„, ์ƒ์ƒํ•ด ๋ณด์„ธ์š”. ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์—๊ฒŒ ์ปคํ”ผ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฒ•์„ ๊ฐ€๋ฅด์น˜๊ณ  ์‹ถ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค. ์–‘์†์œผ๋กœ ์ปต์„ ์žก๊ณ , ์ปคํ”ผ ์›๋‘๋ฅผ ๋”ฐ๋ฅด๊ณ , ๋šœ๊ป‘์„ ๋‹ซ๋Š” ์ผ๋ จ์˜ ๋™์ž‘์„ ๋ง์ด์ฃ . ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ• ๊นŒ์š”?

๊ฐ€์žฅ ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ฐฉ ํ•™์Šต(Imitation Learning)์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์ด ๋กœ๋ด‡์„ ์›๊ฒฉ ์กฐ์ข…ํ•ด์„œ ์‹œ๋ฒ”์„ ๋ณด์—ฌ์ฃผ๊ณ , ๋กœ๋ด‡์€ ๊ทธ๊ฑธ ๋ณด๊ณ  ๋ฐฐ์šฐ๋Š” ๊ฑฐ์ฃ . ๋งˆ์น˜ ์•„์ด๊ฐ€ ๋ถ€๋ชจ์˜ ํ–‰๋™์„ ๋”ฐ๋ผํ•˜๋“ฏ์ด์š”.

ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์„œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ์ƒ๊น๋‹ˆ๋‹ค. RT-1์ด๋‚˜ RT-2 ๊ฐ™์€ ๋Œ€๊ทœ๋ชจ ๋กœ๋ด‡ ํ•™์Šต ํ”„๋กœ์ ํŠธ๋ฅผ ๋ณด๋ฉด, ๋‹จ์ผ ๋กœ๋ด‡ ํŒ” ํ•˜๋‚˜๋ฅผ ํ›ˆ๋ จ์‹œํ‚ค๋Š” ๋ฐ๋„ ์ˆ˜๊ฐœ์›”์˜ ์ธ๋ ฅ๊ณผ ์ˆ˜๋ฐฑ ์‹œ๊ฐ„์˜ ๋ฐ๋ชจ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์€์š”? ๋‘ ๊ฐœ์˜ ํŒ”, ๊ทธ๋ฆฌ๊ณ  ๊ฐ ํŒ”๋งˆ๋‹ค ๋‹ค๊ด€์ ˆ ์†๊ฐ€๋ฝ(๋ณดํ†ต 6~16 ์ž์œ ๋„)์„ ์ œ์–ดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜์˜ ๋ณต์žก๋„๊ฐ€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฑฐ์ฃ .

๋‹จ์ผ ํŒ” ๊ทธ๋ฆฌํผ:     ~7 DoF (ํŒ” 6DoF + ๊ทธ๋ฆฌํผ 1DoF)
์–‘ํŒ” + ์†์žฌ์ฃผ ์†:   ~38 DoF (ํŒ” 2ร—7DoF + ์† 2ร—12DoF)
                    โ†’ ์ œ์–ด ๋ณต์žก๋„ ์•ฝ 5๋ฐฐ ์ด์ƒ ์ฆ๊ฐ€

1.2 ํ•ต์‹ฌ ์งˆ๋ฌธ

์ด ๋…ผ๋ฌธ์ด ๋˜์ง€๋Š” ์งˆ๋ฌธ์€ ๋ช…ํ™•ํ•ฉ๋‹ˆ๋‹ค:

โ€œ์†Œ์ˆ˜์˜ ์ธ๊ฐ„ ์‹œ์—ฐ๋งŒ์œผ๋กœ ๋Œ€๊ทœ๋ชจ์˜ ์–‘ํŒ” ์†์žฌ์ฃผ ์กฐ์ž‘ ๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์„๊นŒ?โ€

๋‹ต์€ โ€œ์˜ˆโ€์ž…๋‹ˆ๋‹ค. DexMimicGen์€ ๋‹จ 60๊ฐœ์˜ ์ธ๊ฐ„ ์‹œ์—ฐ์—์„œ 21,000๊ฐœ ์ด์ƒ์˜ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ๊ถค์ ์„ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ์–ด๋–ป๊ฒŒ ๊ฐ€๋Šฅํ•œ์ง€, ์ง€๊ธˆ๋ถ€ํ„ฐ ๊นŠ์ด ๋“ค์–ด๊ฐ€ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.


2. ๋ฐฐ๊ฒฝ ์ง€์‹: MimicGen์—์„œ DexMimicGen์œผ๋กœ

2.1 MimicGen์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด

DexMimicGen์„ ์ดํ•ดํ•˜๋ ค๋ฉด ๋จผ์ € ๊ทธ ์„ ๋ฐฐ ๊ฒฉ์ธ MimicGen์„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.

MimicGen์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด๋Š” ์•„์ฃผ ์šฐ์•„ํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ด‡์ด ๋ฌผ์ฒด๋ฅผ ์žก๋Š” ๋™์ž‘์„ ์ƒ๊ฐํ•ด ๋ณด์„ธ์š”. ํŒŒ๋ž€ ํ๋ธŒ๋ฅผ ์ง‘์–ด์„œ ๋นจ๊ฐ„ ์ƒ์ž์— ๋„ฃ๋Š” ์ž‘์—…์ด๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.

ํ•ต์‹ฌ ํ†ต์ฐฐ: ํŒŒ๋ž€ ํ๋ธŒ๋ฅผ ์žก๋Š” ์ƒ๋Œ€์ ์ธ ์†์˜ ์›€์ง์ž„์€ ํ๋ธŒ๊ฐ€ ํ…Œ์ด๋ธ” ์–ด๋””์— ์žˆ๋“  ๊ฑฐ์˜ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ํ๋ธŒ๊ฐ€ ์™ผ์ชฝ์— ์žˆ์œผ๋ฉด ๋กœ๋ด‡์ด ์™ผ์ชฝ์œผ๋กœ ๊ฐ€๊ณ , ์˜ค๋ฅธ์ชฝ์— ์žˆ์œผ๋ฉด ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๊ฐ€๋ฉด ๋ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ํ๋ธŒ ๊ธฐ์ค€์œผ๋กœ ๋ณด๋ฉด, ์†์€ ํ•ญ์ƒ ์œ„์—์„œ ๋‚ด๋ ค์™€์„œ ์–‘ ์˜†์„ ๊ฐ์‹ธ๋Š” ๋˜‘๊ฐ™์€ ํŒจํ„ด์„ ๋ณด์ž…๋‹ˆ๋‹ค.

์ด๊ฒƒ์ด ๋ฐ”๋กœ SE(3) ๋“ฑ๋ณ€์„ฑ(Equivariance)์ž…๋‹ˆ๋‹ค:

\text{๋งŒ์•ฝ ๋ฌผ์ฒด pose } T^o_W \text{๊ฐ€ ๋ณ€ํ™˜ } \Delta T \text{๋ฅผ ๋ฐ›์œผ๋ฉด,} \text{๋กœ๋ด‡ action } T^C_W \text{๋„ ๋™์ผํ•œ } \Delta T \text{๋ฅผ ๋ฐ›์•„๋„ ๋œ๋‹ค}

์ˆ˜ํ•™์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด, ์›๋ณธ ๋ฐ๋ชจ์—์„œ ๋ฌผ์ฒด์˜ ํฌ์ฆˆ๊ฐ€ T^o_W์ด๊ณ  ์ƒˆ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฌผ์ฒด ํฌ์ฆˆ๊ฐ€ T^{o'}_W์ผ ๋•Œ, ๋ณ€ํ™˜ ํ–‰๋ ฌ์€:

\Delta T = T^{o'}_W \cdot (T^o_W)^{-1}

์ด ๋ณ€ํ™˜์„ ์›๋ณธ ๊ถค์ ์˜ ๋ชจ๋“  end-effector ํฌ์ฆˆ์— ์ ์šฉํ•˜๋ฉด, ์ƒˆ๋กœ์šด ๋ฌผ์ฒด ์œ„์น˜์— ๋งž๋Š” ์ƒˆ ๊ถค์ ์ด ํƒ„์ƒํ•ฉ๋‹ˆ๋‹ค!

2.2 ์™œ MimicGen๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•œ๊ฐ€?

MimicGen์€ ๋‹จ์ผ ํŒ”์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์ง€๋งŒ, ์–‘ํŒ” ์†์žฌ์ฃผ ์กฐ์ž‘์—๋Š” ์„ธ ๊ฐ€์ง€ ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค:

flowchart TD
    subgraph limit["MimicGen์˜ ํ•œ๊ณ„"]
    A["๋‹จ์ผ ์„œ๋ธŒํƒœ์Šคํฌ ์‹œํ€€์Šค"] --> B["์–‘ํŒ” ๋…๋ฆฝ ๋™์ž‘ ๋ถˆ๊ฐ€"]
    C["๊ณ ์ •๋œ ์‹œ๊ฐ„ ์ •๋ ฌ"] --> D["๋น„๋™๊ธฐ ์‹คํ–‰ ๋ถˆ๊ฐ€"]
    E["๋‹จ์ผ ์ฐธ์กฐ ๋ฌผ์ฒด"] --> F["์–‘์† ํ˜‘์‘ ์–ด๋ ค์›€"]
    end

    subgraph require["์–‘ํŒ” ์กฐ์ž‘์˜ ์š”๊ตฌ์‚ฌํ•ญ"]
    G["๊ฐ ํŒ”์ด ๋…๋ฆฝ์ ์œผ๋กœ ๋‹ค๋ฅธ ๋ชฉํ‘œ ์ˆ˜ํ–‰"]
    H["์–‘ํŒ”์ด ๋™์‹œ์— ํ•˜๋‚˜์˜ ๋ชฉํ‘œ ํ˜‘์—…"]
    I["ํ•œ ํŒ”์ด ๋จผ์ € ์™„๋ฃŒ ํ›„ ๋‹ค๋ฅธ ํŒ” ์‹œ์ž‘"]
    end

    B --> G
    D --> H
    F --> I

์˜ˆ๋ฅผ ๋“ค์–ด ์„ค๋ช…ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค:

์‹œ๋‚˜๋ฆฌ์˜ค 1 - Piece Assembly (๋ณ‘๋ ฌ ์ž‘์—…) - ์™ผ์†: ์˜ค๋ชฉํ•œ ์กฐ๊ฐ ์ง‘๊ธฐ - ์˜ค๋ฅธ์†: ๋ณผ๋กํ•œ ์กฐ๊ฐ ์ง‘๊ธฐ - ๊ฐ ์†์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ž๊ธฐ ๋ฌผ์ฒด๋ฅผ ํ–ฅํ•ด ์›€์ง์ž„

์‹œ๋‚˜๋ฆฌ์˜ค 2 - Box Cleanup (ํ˜‘์‘ ์ž‘์—…)
- ์–‘์†์ด ๋™์‹œ์— ์ƒ์ž ๋šœ๊ป‘์˜ ์–‘์ชฝ์„ ์žก๊ณ  ๋‹ซ๊ธฐ - ๋‘ ์†์˜ ์ƒ๋Œ€์  ์œ„์น˜๊ฐ€ ์ •ํ™•ํžˆ ์œ ์ง€๋˜์–ด์•ผ ํ•จ

์‹œ๋‚˜๋ฆฌ์˜ค 3 - Pouring (์ˆœ์ฐจ ์ž‘์—…) - ๋จผ์ €: ํ•œ ์†์œผ๋กœ ๊ณต์„ ๊ทธ๋ฆ‡์— ๋ถ“๊ธฐ - ๊ทธ ๋‹ค์Œ: ๋‹ค๋ฅธ ์†์œผ๋กœ ๊ทธ๋ฆ‡์„ ์ด๋™ - ์ˆœ์„œ๊ฐ€ ๋ฐ”๋€Œ๋ฉด ์‹คํŒจ

MimicGen์˜ ๋‹จ์ผ ์‹œํ€€์Šค ๋ถ„ํ• ๋กœ๋Š” ์ด๋Ÿฐ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.


3. DexMimicGen ๋ฐฉ๋ฒ•๋ก : ์„ธ ๊ฐ€์ง€ ์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•

3.1 ์ „์ฒด ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜

DexMimicGen์˜ ํ•ต์‹ฌ์€ ์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜• ๋ถ„๋ฅ˜๋ฒ•(Taxonomy of Subtask Types)์ž…๋‹ˆ๋‹ค. ๋ชจ๋“  ์–‘ํŒ” ์กฐ์ž‘์„ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค:

flowchart LR
    subgraph subtask["์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•"]
    P["Parallel - ๋ณ‘๋ ฌ"]
    C["Coordination - ํ˜‘์‘"]
    S["Sequential - ์ˆœ์ฐจ"]
    end

    P --> PA["๊ฐ ํŒ” ๋…๋ฆฝ ์‹คํ–‰, ๋น„๋™๊ธฐ ํ ๊ด€๋ฆฌ"]
    C --> CA["์–‘ํŒ” ๋™๊ธฐํ™”, ๋™์ผ ๋ณ€ํ™˜ ์ ์šฉ"]
    S --> SA["์ˆœ์„œ ์ œ์•ฝ ์ ์šฉ, pre/post ํƒœ์Šคํฌ"]

    PA --> OUT["ํ†ตํ•ฉ ๊ถค์  ์ƒ์„ฑ"]
    CA --> OUT
    SA --> OUT

3.2 Parallel Subtasks (๋ณ‘๋ ฌ ์„œ๋ธŒํƒœ์Šคํฌ)

๊ฐœ๋…: ๊ฐ ํŒ”์ด ๋…๋ฆฝ์ ์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชฉํ‘œ๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

๊ฐ€์žฅ ์ค‘์š”ํ•œ ํ˜์‹ ์€ ํŒ”๋ณ„ ๋…๋ฆฝ ์„œ๋ธŒํƒœ์Šคํฌ ์‹œํ€€์Šค์ž…๋‹ˆ๋‹ค:

MimicGen (๊ธฐ์กด):

์ „์ฒด ํƒœ์Šคํฌ: Sโ‚(oโ‚) โ†’ Sโ‚‚(oโ‚‚) โ†’ ... โ†’ Sโ‚˜(oโ‚˜)

DexMimicGen (์ƒˆ๋กœ์šด ๋ฐฉ์‹):

์™ผํŒ”:  Sยนโ‚(oโ‚) โ†’ Sยนโ‚‚(oโ‚‚) โ†’ ... โ†’ Sยนโ‚˜โ‚(oโ‚˜โ‚)
์˜ค๋ฅธํŒ”: Sยฒโ‚(oโ‚) โ†’ Sยฒโ‚‚(oโ‚‚) โ†’ ... โ†’ Sยฒโ‚˜โ‚‚(oโ‚˜โ‚‚)

๋น„๋™๊ธฐ ์‹คํ–‰ ์ „๋žต (Asynchronous Execution Strategy)

๊ฐ ํŒ”๋งˆ๋‹ค ๋ณ„๋„์˜ ์•ก์…˜ ํ(Action Queue)๋ฅผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค:

# ์˜์‚ฌ ์ฝ”๋“œ: ๋น„๋™๊ธฐ ์‹คํ–‰ ๋ฃจํ”„
while not task_complete:
    for arm in [left_arm, right_arm]:
        if arm.action_queue.empty():
            # ๋‹ค์Œ ์„œ๋ธŒํƒœ์Šคํฌ์˜ ๋ณ€ํ™˜๋œ ์„ธ๊ทธ๋จผํŠธ๋กœ ํ ์ฑ„์šฐ๊ธฐ
            next_segment = transform_segment(
                source_segment=arm.get_next_source_segment(),
                current_object_pose=get_object_pose(arm.reference_object),
                source_object_pose=arm.source_object_pose
            )
            arm.action_queue.extend(next_segment)
        
        # ํ์—์„œ ์•ก์…˜ ํ•˜๋‚˜์”ฉ ๋””ํํ•˜์—ฌ ์‹คํ–‰
        action = arm.action_queue.dequeue()
        arm.execute(action)

ํ•ต์‹ฌ ์žฅ์ : ๋‘ ํŒ”์˜ ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ์ ์— ์‹œ์ž‘ํ•˜๊ณ  ๋๋‚˜๋„ ๋ฌธ์ œ์—†์Šต๋‹ˆ๋‹ค. ๋งˆ์น˜ ๋‘ ๋ช…์˜ ์š”๋ฆฌ์‚ฌ๊ฐ€ ๊ฐ์ž์˜ ์†๋„๋กœ ์žฌ๋ฃŒ๋ฅผ ์ค€๋น„ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”.

3.3 Coordination Subtasks (ํ˜‘์‘ ์„œ๋ธŒํƒœ์Šคํฌ)

๊ฐœ๋…: ์–‘ํŒ”์ด ํ•จ๊ป˜ ํ•˜๋‚˜์˜ ๊ณต์œ  ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

ํ˜‘์‘ ์„œ๋ธŒํƒœ์Šคํฌ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€๊ฐ€ ๋ณด์žฅ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค:

  1. ์‹œ๊ฐ„์  ์ •๋ ฌ (Temporal Alignment): ์–‘ํŒ”์ด ๋™๊ธฐํ™”๋˜์–ด ์‹คํ–‰
  2. ๊ณต๊ฐ„์  ์ผ๊ด€์„ฑ (Spatial Consistency): ๋‘ end-effector ๊ฐ„์˜ ์ƒ๋Œ€์  ํฌ์ฆˆ๊ฐ€ ์›๋ณธ ๋ฐ๋ชจ์™€ ์ผ์น˜

๋™๊ธฐํ™” ์ „๋žต:

์†Œ์Šค ๋ฐ๋ชจ ๋ถ„ํ•  ์‹œ, ํ˜‘์‘ ์„œ๋ธŒํƒœ์Šคํฌ๋Š” ๊ฐ™์€ ํƒ€์ž„์Šคํ…์—์„œ ๋๋‚˜๋„๋ก ๊ฐ•์ œํ•ฉ๋‹ˆ๋‹ค.

# ๋™๊ธฐํ™” ์‹คํ–‰ ์ „๋žต
def execute_coordination_subtask(left_segment, right_segment):
    # ์–‘ํŒ”์ด ๋‚จ์€ ์Šคํ… ์ˆ˜๊ฐ€ ๊ฐ™์•„์งˆ ๋•Œ๊นŒ์ง€ ๋Œ€๊ธฐ
    while len(left_segment) != len(right_segment):
        if len(left_segment) > len(right_segment):
            wait(left_arm)
        else:
            wait(right_arm)
    
    # ๋™์‹œ ์‹คํ–‰
    for left_action, right_action in zip(left_segment, right_segment):
        execute_simultaneously(left_action, right_action)

๋ณ€ํ™˜ ๋ฐฉ์‹ ์„ ํƒ:

๋ฐฉ์‹ ์„ค๋ช… ์ ํ•ฉํ•œ ์ƒํ™ฉ
Transform ๋ฌผ์ฒด ํฌ์ฆˆ ๋ณ€ํ™˜ ํ–‰๋ ฌ ์ ์šฉ ์ผ๋ฐ˜์ ์ธ ํ˜‘์‘ ์ž‘์—…
Replay ์†Œ์Šค ๊ถค์  ๊ทธ๋Œ€๋กœ ์žฌ์ƒ ํ•ธ๋“œ์˜ค๋ฒ„ ๋“ฑ ์šด๋™ํ•™์  ํ•œ๊ณ„ ๊ทผ์ ‘ ์ž‘์—…

Replay ๋ฐฉ์‹์€ ํŠนํžˆ ํ•ธ๋“œ์˜ค๋ฒ„(ํ•œ ์†์—์„œ ๋‹ค๋ฅธ ์†์œผ๋กœ ๋ฌผ์ฒด ์ „๋‹ฌ) ์ž‘์—…์—์„œ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ณ€ํ™˜์„ ์ ์šฉํ•˜๋ฉด ๋กœ๋ด‡์˜ ์šด๋™ํ•™์  ํ•œ๊ณ„๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ๊ถค์ ์ด ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

3.4 Sequential Subtasks (์ˆœ์ฐจ ์„œ๋ธŒํƒœ์Šคํฌ)

๊ฐœ๋…: ํŠน์ • ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ์™„๋ฃŒ๋œ ํ›„์—์•ผ ๋‹ค๋ฅธ ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ „ํ˜•์ ์ธ ์˜ˆ: Pouring ํƒœ์Šคํฌ 1. Pre-task: ์™ผ์†์œผ๋กœ ๊ณต์„ ๊ทธ๋ฆ‡์— ๋ถ“๊ธฐ 2. Post-task: ์˜ค๋ฅธ์†์œผ๋กœ ๊ทธ๋ฆ‡์„ ๋…น์ƒ‰ ํŒจ๋“œ๋กœ ์ด๋™

๊ณต์„ ๋ถ“๊ธฐ ์ „์— ๊ทธ๋ฆ‡์„ ์ด๋™ํ•˜๋ฉดโ€ฆ ๋‹น์—ฐํžˆ ์‹คํŒจํ•ฉ๋‹ˆ๋‹ค!

์ˆœ์„œ ์ œ์•ฝ ๋ฉ”์ปค๋‹ˆ์ฆ˜ (Ordering Constraint Mechanism):

def execute_with_ordering_constraint(pre_subtask, post_subtask, pre_arm, post_arm):
    pre_complete = False
    
    while not task_complete:
        # Pre-task๋Š” ํ•ญ์ƒ ์‹คํ–‰
        if not pre_complete:
            pre_arm.execute_next_action()
            if pre_arm.subtask_complete():
                pre_complete = True
        
        # Post-task๋Š” pre-task ์™„๋ฃŒ ํ›„์—๋งŒ ์‹คํ–‰
        if pre_complete:
            post_arm.execute_next_action()

3.5 ์ „์ฒด ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์›Œํฌํ”Œ๋กœ์šฐ

๋‹ค์Œ ๋‹ค์ด์–ด๊ทธ๋žจ์€ DexMimicGen์˜ ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค:

flowchart TB
    subgraph step1["1๋‹จ๊ณ„: ์†Œ์Šค ๋ฐ๋ชจ ์ˆ˜์ง‘ ๋ฐ ๋ถ„ํ• "]
    A["์ธ๊ฐ„ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜"] --> B["์†Œ์Šค ๋ฐ๋ชจ ์ˆ˜์ง‘"]
    B --> C["ํŒ”๋ณ„ ์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ• "]
    C --> D["์ฐธ์กฐ ๋ฌผ์ฒด ํฌ์ฆˆ ๊ธฐ๋ก"]
    end

    subgraph step2["2๋‹จ๊ณ„: ์ž๋™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ"]
    E["์ƒˆ ํ™˜๊ฒฝ ์ดˆ๊ธฐํ™”"] --> F{"์†Œ์Šค ๋ฐ๋ชจ ์„ ํƒ"}
    F --> G["ํ˜„์žฌ ๋ฌผ์ฒด ํฌ์ฆˆ ๊ด€์ธก"]
    G --> H["๋ณ€ํ™˜ ํ–‰๋ ฌ ๊ณ„์‚ฐ"]
    H --> I["์†Œ์Šค ๊ถค์  ๋ณ€ํ™˜"]
    I --> J["์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•๋ณ„ ์‹คํ–‰"]
    J --> K{"ํƒœ์Šคํฌ ์„ฑ๊ณต?"}
    K -->|Yes| L["๋ฐ๋ชจ ์ €์žฅ"]
    K -->|No| E
    L --> M{"์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ?"}
    M -->|No| E
    M -->|Yes| N["๋ฐ์ดํ„ฐ์…‹ ์™„์„ฑ"]
    end

    subgraph step3["3๋‹จ๊ณ„: ์ •์ฑ… ํ•™์Šต"]
    N --> O["Behavioral Cloning"]
    O --> P["Diffusion Policy / BC-RNN"]
    end


4. ์‹œ์Šคํ…œ ์„ค๊ณ„: ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ๊ณผ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜

4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ

DexMimicGen์€ RoboSuite ํ”„๋ ˆ์ž„์›Œํฌ์™€ MuJoCo ๋ฌผ๋ฆฌ ์—”์ง„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

์„ธ ๊ฐ€์ง€ ๋กœ๋ด‡ ์œ ํ˜•:

๋กœ๋ด‡ ์œ ํ˜• ๊ตฌ์„ฑ ์ œ์–ด๊ธฐ
์–‘ํŒ” Panda + ํ‰ํ–‰ ๊ทธ๋ฆฌํผ 2ร—7DoF ํŒ” + 2ร—1DoF ๊ทธ๋ฆฌํผ OSC (Operational Space Control)
์–‘ํŒ” Panda + ์†์žฌ์ฃผ ์† 2ร—7DoF ํŒ” + 2ร—6DoF ์† OSC + Joint Position Control
GR-1 ํœด๋จธ๋…ธ์ด๋“œ ์ƒ์ฒด + 2ร—6DoF ์† IK (Inverse Kinematics) + Joint Position

9๊ฐ€์ง€ ํƒœ์Šคํฌ ๋ฒค์น˜๋งˆํฌ:

flowchart TB
    subgraph gripper["ํ‰ํ–‰ ๊ทธ๋ฆฌํผ ํƒœ์Šคํฌ"]
    T1["Threading - ์‹ค ๊ฟฐ๊ธฐ"]
    T2["Piece Assembly - ์กฐ๊ฐ ์กฐ๋ฆฝ"]
    T3["Transport - ๋ฌผ์ฒด ์šด๋ฐ˜"]
    end

    subgraph dex["์†์žฌ์ฃผ ์† ํƒœ์Šคํฌ"]
    T4["Box Cleanup - ์ƒ์ž ์ •๋ฆฌ"]
    T5["Drawer Cleanup - ์„œ๋ž ์ •๋ฆฌ"]
    T6["Tray Lift - ํŠธ๋ ˆ์ด ๋“ค๊ธฐ"]
    end

    subgraph humanoid["ํœด๋จธ๋…ธ์ด๋“œ ํƒœ์Šคํฌ"]
    T7["Pouring - ๋ถ“๊ธฐ"]
    T8["Coffee - ์ปคํ”ผ ๋งŒ๋“ค๊ธฐ"]
    T9["Can Sorting - ์บ” ๋ถ„๋ฅ˜"]
    end

    T1 --> COORD["๋‹ค์–‘ํ•œ ์กฐ์ • ์š”๊ตฌ์‚ฌํ•ญ"]
    T2 --> COORD
    T3 --> COORD
    T4 --> COORD
    T5 --> COORD
    T6 --> COORD
    T7 --> COORD
    T8 --> COORD
    T9 --> COORD

4.2 ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ

ํ‰ํ–‰ ๊ทธ๋ฆฌํผ ๋กœ๋ด‡: iPhone ๊ธฐ๋ฐ˜ RoboTurk ์ธํ„ฐํŽ˜์ด์Šค

์†์žฌ์ฃผ ์† ๋กœ๋ด‡: Apple Vision Pro ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ - VisionProTeleop ์†Œํ”„ํŠธ์›จ์–ด๋กœ ์†๋ชฉ/์†๊ฐ€๋ฝ ํฌ์ฆˆ ์บก์ฒ˜ - OmniH2O์˜ ๋ฆฌํƒ€๊ฒŸํŒ… ๋ฐฉ๋ฒ•์œผ๋กœ ์ธ๊ฐ„ ์†๊ฐ€๋ฝ ํฌ์ฆˆ โ†’ ๋กœ๋ด‡ ๊ด€์ ˆ ์œ„์น˜ ๋ณ€ํ™˜

์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ํ”„๋กœ์„ธ์Šค:

1. ์กฐ์ž‘์ž๊ฐ€ ๊ณ ์ • ํฌ์ฆˆ๋กœ ์‹œ์ž‘
2. ์‹œ์Šคํ…œ์ด ์ž๋™์œผ๋กœ ์ƒ๋Œ€ ๋ณ€ํ™˜ ํ–‰๋ ฌ ๊ณ„์‚ฐ
3. ์ธ๊ฐ„ ํฌ์ฆˆ โ†’ ๋กœ๋ด‡ ํƒ€๊ฒŸ ๋งคํ•‘ ์™„์„ฑ

5. ์‹คํ—˜ ๊ฒฐ๊ณผ: ์ˆซ์ž๊ฐ€ ๋งํ•ด์ฃผ๋Š” ๊ฒƒ

5.1 ํ•ต์‹ฌ ๊ฒฐ๊ณผ ์š”์•ฝ

๋ฐ์ดํ„ฐ์…‹ ํ†ต๊ณ„: - ์†Œ์Šค ์ธ๊ฐ„ ๋ฐ๋ชจ: 60๊ฐœ (๊ทธ๋ฆฌํผ ํƒœ์Šคํฌ 10๊ฐœร—3, ์†์žฌ์ฃผ ํƒœ์Šคํฌ 5๊ฐœร—6) - ์ƒ์„ฑ๋œ ๋ฐ๋ชจ: 21,000๊ฐœ ์ด์ƒ - ๋ฐ์ดํ„ฐ ํ™•๋Œ€ ๋น„์œจ: 350๋ฐฐ

์ •์ฑ… ์„ฑ๋Šฅ ๋น„๊ต (1000๊ฐœ ์ƒ์„ฑ ๋ฐ๋ชจ ๊ธฐ์ค€, Diffusion Policy):

ํƒœ์Šคํฌ ์†Œ์Šค ๋ฐ๋ชจ๋งŒ DexMimicGen ๋ฐ์ดํ„ฐ ํ–ฅ์ƒํญ
Piece Assembly 3.3% 80.7% +77.4%
Threading 1.3% 69.3% +68.0%
Drawer Cleanup 0.7% 76.0% +75.3%
Can Sorting 0.7% 97.3% +96.6%
Tray Lift 3.3% 88.7% +85.4%
Pouring 0.7% 79.3% +78.6%
Coffee 14.7% 77.3% +62.6%

ํ•ต์‹ฌ ๋ฐœ๊ฒฌ: ์†Œ์Šค ๋ฐ๋ชจ๋งŒ์œผ๋กœ๋Š” ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋˜ ํƒœ์Šคํฌ๋“ค(0.7~3.3% ์„ฑ๊ณต๋ฅ )์ด DexMimicGen ๋ฐ์ดํ„ฐ๋กœ ํ›ˆ๋ จํ•˜๋ฉด 70~97% ์„ฑ๊ณต๋ฅ ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.

5.2 ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ์˜ ์˜ํ–ฅ

         ์„ฑ๊ณต๋ฅ  (%)
    100 โ”ค                                    โ•ญโ”€โ”€โ”€โ”€ Can Sorting
        โ”‚                              โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
     80 โ”ค                        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ        โ•ญโ”€โ”€ Pouring
        โ”‚                  โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
     60 โ”ค            โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
        โ”‚      โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
     40 โ”คโ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
        โ•ญโ•ฏ        โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
     20 โ”ค   โ•ญโ”€โ”€โ”€โ”€โ”€โ•ฏ
        โ”‚โ”€โ”€โ”€โ•ฏ
      0 โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
          100       500      1000      5000
                    ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ

๊ด€์ฐฐ: 100โ†’500โ†’1000 ๋ฐ๋ชจ์—์„œ ํฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ์žˆ์ง€๋งŒ, 1000โ†’5000์—์„œ๋Š” ์ˆ˜ํ™• ์ฒด๊ฐ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ํƒœ์Šคํฌ์— ๋”ฐ๋ผ ์ตœ์ ์˜ ๋ฐ์ดํ„ฐ ํฌ๊ธฐ๊ฐ€ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค.

5.3 Demo-Noise ๋ฒ ์ด์Šค๋ผ์ธ๊ณผ์˜ ๋น„๊ต

Demo-Noise: ์†Œ์Šค ๋ฐ๋ชจ๋ฅผ ์•ก์…˜ ๋…ธ์ด์ฆˆ์™€ ํ•จ๊ป˜ ์žฌ์ƒํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ

ํƒœ์Šคํฌ Demo-Noise DexMimicGen ์ฐจ์ด
Piece Assembly 12.7% 74.0% +61.3%
Tray Lift 16.7% 75.3% +58.6%
Pouring 26.7% 79.3% +52.6%

ํ•ต์‹ฌ ์ฐจ์ด์ : Demo-Noise๋Š” ์ดˆ๊ธฐ ๋ฌผ์ฒด ๋ฐฐ์น˜๊ฐ€ ๋‹ค๋ฅธ ํ™˜๊ฒฝ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. DexMimicGen์€ ๋ฌผ์ฒด ํฌ์ฆˆ ๋ณ€ํ™˜์„ ํ™œ์šฉํ•˜๋ฏ€๋กœ ๋‹ค์–‘ํ•œ ์ดˆ๊ธฐ ๋ถ„ํฌ์—์„œ ์œ ํšจํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

5.4 ์ •์ฑ… ์•„ํ‚คํ…์ฒ˜ ๋น„๊ต

์•„ํ‚คํ…์ฒ˜ ํŠน์ง• ํ‰๊ท  ์„ฑ๋Šฅ
Diffusion Policy ์•ก์…˜ ๋””ํ“จ์ „, ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ๋ถ„ํฌ ์ตœ๊ณ 
BC-RNN RNN ๊ธฐ๋ฐ˜, ๊ฐ„๋‹จ ์ค‘๊ฐ„
BC-RNN-GMM GMM ์•ก์…˜ ํ—ค๋“œ ์ƒ๋Œ€์  ์ €์กฐ

ํฅ๋ฏธ๋กœ์šด ๋ฐœ๊ฒฌ: RoboMimic ์—ฐ๊ตฌ์—์„œ๋Š” GMM ํ—ค๋“œ๊ฐ€ ์œ ๋ฆฌํ–ˆ์ง€๋งŒ, ์†์žฌ์ฃผ ์กฐ์ž‘์—์„œ๋Š” ์˜คํžˆ๋ ค ์—ญํšจ๊ณผ๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ๊ณ ์ฐจ์› ์•ก์…˜ ๊ณต๊ฐ„์—์„œ GMM์˜ ๋ชจ๋“œ ๋ถ•๊ดด ๋ฌธ์ œ๊ฐ€ ์˜์‹ฌ๋ฉ๋‹ˆ๋‹ค.

5.5 ์‹ค์„ธ๊ณ„ ๋ฐฐํฌ ๊ฒฐ๊ณผ

Real2Sim2Real ํŒŒ์ดํ”„๋ผ์ธ:

flowchart LR
    A["์‹ค์„ธ๊ณ„ 4๊ฐœ ์‹œ์—ฐ"] --> B["๋””์ง€ํ„ธ ํŠธ์œˆ์—์„œ ์žฌ์ƒ"]
    B --> C["DexMimicGen์œผ๋กœ 40๊ฐœ ๋ฐ๋ชจ ์ƒ์„ฑ"]
    C --> D["์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์ •์ฑ… ํ•™์Šต"]
    D --> E["์‹ค์„ธ๊ณ„ ๋ฐฐํฌ"]

    F["์†Œ์Šค ๋ฐ๋ชจ๋งŒ์œผ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…"] --> G["0% ์„ฑ๊ณต"]
    E --> H["90% ์„ฑ๊ณต"]

ํ•˜๋“œ์›จ์–ด: Fourier GR-1 ํœด๋จธ๋…ธ์ด๋“œ + Inspire 6-DoF ์†์žฌ์ฃผ ์† ํƒœ์Šคํฌ: Can Sorting (์บ” ๋ถ„๋ฅ˜) ๊ฒฐ๊ณผ: 4๊ฐœ ์†Œ์Šค ๋ฐ๋ชจ โ†’ 0% ์„ฑ๊ณต, 40๊ฐœ DexMimicGen ๋ฐ๋ชจ โ†’ 90% ์„ฑ๊ณต


6. ๊ธฐ์ˆ ์  ์‹ฌ์ธต ๋ถ„์„

6.1 SE(3) ๋“ฑ๋ณ€์„ฑ์˜ ํ™œ์šฉ

DexMimicGen์˜ ์ˆ˜ํ•™์  ๊ธฐ๋ฐ˜์€ SE(3) ๋“ฑ๋ณ€์„ฑ์ž…๋‹ˆ๋‹ค. ์ง๊ด€์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉด:

โ€œ๋ฌผ์ฒด๊ฐ€ ์–ด๋””๋กœ ์›€์ง์ด๋“ , ๋ฌผ์ฒด ๊ธฐ์ค€์œผ๋กœ ๋ณธ ๋กœ๋ด‡์˜ ์›€์ง์ž„์€ ๋™์ผํ•˜๋‹คโ€

์ˆ˜ํ•™์ ์œผ๋กœ:

\tau' = \Delta T \cdot \tau

์—ฌ๊ธฐ์„œ: - \tau = (T^{C_0}_W, T^{C_1}_W, ..., T^{C_K}_W): ์›๋ณธ end-effector ๊ถค์  - \Delta T = T^{o'}_W \cdot (T^o_W)^{-1}: ๋ฌผ์ฒด ํฌ์ฆˆ ๋ณ€ํ™˜ - \tau': ๋ณ€ํ™˜๋œ ์ƒˆ ๊ถค์ 

์ด ์›๋ฆฌ๊ฐ€ ์™œ ์ž‘๋™ํ•˜๋Š”์ง€ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค. ์ปต์„ ์žก๋Š” ๋™์ž‘์—์„œ ์†๊ฐ€๋ฝ์ด ์ปต ํ‘œ๋ฉด์„ ๊ฐ์‹ธ๋Š” ํŒจํ„ด์€ ์ปต์ด ํ…Œ์ด๋ธ” ์–ด๋””์— ์žˆ๋“  ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ๋ณ€ํ•˜๋Š” ๊ฒƒ์€ ๋กœ๋ด‡์ด ์ปต์— ์ ‘๊ทผํ•˜๋Š” ์ „์—ญ ๊ฒฝ๋กœ๋ฟ์ž…๋‹ˆ๋‹ค.

6.2 ์†๊ฐ€๋ฝ ๋™์ž‘ ์ฒ˜๋ฆฌ

์†์žฌ์ฃผ ์กฐ์ž‘์—์„œ ์ค‘์š”ํ•œ ํฌ์ธํŠธ: ์†๊ฐ€๋ฝ ๋™์ž‘์€ ๋ณ€ํ™˜ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค

์ด์œ : ์†๊ฐ€๋ฝ ์›€์ง์ž„์€ ํ•ญ์ƒ end-effector(์†๋ชฉ) ๊ธฐ์ค€์˜ ์ƒ๋Œ€์  ์›€์ง์ž„์ž…๋‹ˆ๋‹ค. ์†๋ชฉ์ด ์–ด๋””์— ์žˆ๋“  โ€œ์†๊ฐ€๋ฝ์„ ์˜ค๋ฏ€๋ ค์„œ ์žก๊ธฐโ€ ๋™์ž‘ ์ž์ฒด๋Š” ๋™์ผํ•ฉ๋‹ˆ๋‹ค.

def generate_finger_motion(source_demo, generated_ee_trajectory):
    # End-effector ๊ถค์ ์€ ๋ณ€ํ™˜๋œ ๊ฒƒ ์‚ฌ์šฉ
    ee_trajectory = generated_ee_trajectory
    
    # ์†๊ฐ€๋ฝ ๊ด€์ ˆ ์•ก์…˜์€ ์†Œ์Šค ๋ฐ๋ชจ์—์„œ ๊ทธ๋Œ€๋กœ ์žฌ์ƒ
    finger_actions = source_demo.finger_joint_actions
    
    return combine(ee_trajectory, finger_actions)

6.3 ์ œ์–ด๊ธฐ ์„ ํƒ์˜ ์ค‘์š”์„ฑ

Panda ํŒ”: OSC (Operational Space Control) - ์žฅ์ : ์ง๊ด€์ ์ธ end-effector ํฌ์ฆˆ ๋ช…๋ น - ๋‹จ์ : ๋†’์€ ๊ณ„์‚ฐ ๋น„์šฉ

ํœด๋จธ๋…ธ์ด๋“œ: IK (Inverse Kinematics) via mink ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ - ์ด์œ : ํœด๋จธ๋…ธ์ด๋“œ์˜ ๋ณต์žกํ•œ ์šด๋™ํ•™์  ํŠธ๋ฆฌ(์–‘ํŒ”์ด ๋‹จ์ผ ํ† ๋ฅด์†Œ์— ์—ฐ๊ฒฐ)์—์„œ OSC ์ ์šฉ์ด ์–ด๋ ค์›€ - ์žฅ์ : ์ „์—ญ end-effector ํฌ์ฆˆ โ†’ ๊ด€์ ˆ ์œ„์น˜ ๋ณ€ํ™˜์ด ์•ˆ์ •์ 


7. ๋น„ํŒ์  ๊ณ ์ฐฐ

7.1 ๊ฐ•์ 

1. ํ™•์žฅ์„ฑ (Scalability) - ์†Œ์ˆ˜์˜ ์ธ๊ฐ„ ์‹œ์—ฐ์—์„œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ - 350๋ฐฐ ๋ฐ์ดํ„ฐ ํ™•๋Œ€ ๋‹ฌ์„ฑ

2. ๋ฒ”์šฉ์„ฑ (Generality) - ์„ธ ๊ฐ€์ง€ ๋กœ๋ด‡ ํ˜•์ƒ(๊ทธ๋ฆฌํผ, ์†์žฌ์ฃผ ์†, ํœด๋จธ๋…ธ์ด๋“œ)์—์„œ ๊ฒ€์ฆ - ๋‹ค์–‘ํ•œ ํ˜‘์‘ ํŒจํ„ด(๋ณ‘๋ ฌ, ํ˜‘์‘, ์ˆœ์ฐจ) ์ง€์›

3. ์‹ค์šฉ์„ฑ (Practicality) - Real2Sim2Real ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ์‹ค์„ธ๊ณ„ ์ ์šฉ ์ž…์ฆ - ์˜คํ”ˆ์†Œ์Šค ์ฝ”๋“œ ๋ฐ ๋ฐ์ดํ„ฐ์…‹ ๊ณต๊ฐœ

4. ๋ชจ๋“ˆ์„ฑ (Modularity) - ๊ธฐ์กด MimicGen ์œ„์— ๊ตฌ์ถ•ํ•˜์—ฌ ํ˜ธํ™˜์„ฑ ์œ ์ง€ - BiGym ๊ฐ™์€ ๋‹ค๋ฅธ ๋ฒค์น˜๋งˆํฌ์—๋„ ์ ์šฉ ๊ฐ€๋Šฅ

7.2 ์•ฝ์  ๋ฐ ํ•œ๊ณ„

1. ์ •์  ํ™˜๊ฒฝ ๊ฐ€์ • - ๋ฌผ์ฒด๊ฐ€ ์กฐ์ž‘ ์ „๊นŒ์ง€ ์ •์ ์ด๋ผ๊ณ  ๊ฐ€์ • - ๋™์  ํ™˜๊ฒฝ(์›€์ง์ด๋Š” ๋ฌผ์ฒด)์—์„œ๋Š” ์ ์šฉ ์–ด๋ ค์›€

2. ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฐ˜ ๋ถ„ํ•  - ์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ• ์ด ์ˆ˜๋™ ์–ด๋…ธํ…Œ์ด์…˜ ๋˜๋Š” ํœด๋ฆฌ์Šคํ‹ฑ์— ์˜์กด - ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ๋งˆ๋‹ค ๋ถ„ํ•  ์ •์˜ ํ•„์š”

3. ์„ฑ๊ณต ์กฐ๊ฑด ์˜์กด์„ฑ - ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ํƒœ์Šคํฌ ์„ฑ๊ณต ์—ฌ๋ถ€ ํŒ๋‹จ์— ์˜์กด - ๋ณต์žกํ•œ ํƒœ์Šคํฌ์—์„œ ์„ฑ๊ณต ์กฐ๊ฑด ์ •์˜๊ฐ€ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์Œ

4. Sim-to-Real Gap - ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์˜ ์‹ค์„ธ๊ณ„ ์ „์ด ํ•œ๊ณ„ - ๋””์ง€ํ„ธ ํŠธ์œˆ ์ •ํ™•๋„์— ์˜์กด

5. ์ œํ•œ๋œ ์ดˆ๊ธฐ ๋ถ„ํฌ ํ™•์žฅ - D0โ†’D1โ†’D2๋กœ ๊ฐˆ์ˆ˜๋ก ์„ฑ๋Šฅ ๊ฐ์†Œ (Piece Assembly: 74%โ†’67%โ†’44%) - ํฌ๊ฒŒ ๋‹ค๋ฅธ ์ดˆ๊ธฐ ๋ถ„ํฌ์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™” ํ•œ๊ณ„

7.3 ๊ฐœ์„  ๊ฐ€๋Šฅํ•œ ๋ฐฉํ–ฅ

ํ•œ๊ณ„์  ์ œ์•ˆ๋œ ๊ฐœ์„  ๋ฐฉํ–ฅ
์ˆ˜๋™ ์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ•  LLM ๊ธฐ๋ฐ˜ ์ž๋™ ํƒœ์Šคํฌ ๋ถ„ํ•ด
์ •์  ํ™˜๊ฒฝ ๊ฐ€์ • ๋™์  ๋ฌผ์ฒด ์ถ”์  + ์˜จ๋ผ์ธ ์žฌ๊ณ„ํš
Sim-to-Real Gap Domain Randomization ๊ฐ•ํ™”
๊ณ ์ •๋œ ์ดˆ๊ธฐ ๋ถ„ํฌ Adaptive sampling ์ „๋žต

8. ๊ด€๋ จ ์—ฐ๊ตฌ์™€์˜ ๋น„๊ต

8.1 ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘/์ƒ์„ฑ ๋ฐฉ๋ฒ•๋ก 

flowchart TB
    subgraph collect["์ธ๊ฐ„ ๋ฐ๋ชจ ์ˆ˜์ง‘"]
    A1["RoboTurk - ๋Œ€๊ทœ๋ชจ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ"]
    A2["ALOHA - ์ €๋น„์šฉ ์–‘ํŒ” ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜"]
    A3["UMI - ๋กœ๋ด‡ ์—†๋Š” ๋ฐ๋ชจ ์ˆ˜์ง‘"]
    end

    subgraph autogen["์ž๋™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ"]
    B1["RLBench - ํ”„๋กœ๊ทธ๋ž˜๋ฐ๋œ ์ „๋ฌธ๊ฐ€"]
    B2["RoboGen - ์ƒ์„ฑ์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜"]
    B3["MimicGen - ๋ฐ๋ชจ ๋ณ€ํ™˜ ๋ฐ ์žฌ์ƒ"]
    B4["DexMimicGen - ์–‘ํŒ” ์†์žฌ์ฃผ ํ™•์žฅ"]
    end

    subgraph augment["๋ฐ์ดํ„ฐ ์ฆ๊ฐ•"]
    C1["์ด๋ฏธ์ง€ ์ฆ๊ฐ• - RAD, DrQ"]
    C2["๊ถค์  ์ฆ๊ฐ• - MOCODA"]
    C3["GenAug - ์ƒ์„ฑ ๋ชจ๋ธ ํ™œ์šฉ"]
    end

    A1 --> HUMAN["๋†’์€ ๋น„์šฉ"]
    A2 --> HUMAN
    A3 --> HUMAN
    B1 --> PROG["ํ™•์žฅ์„ฑ ์ œํ•œ"]
    B3 --> B4
    B4 --> SCALE["๋†’์€ ํ™•์žฅ์„ฑ"]

์ฐจ๋ณ„์ : DexMimicGen์€ MimicGen์˜ ์›๋ฆฌ๋ฅผ ์–‘ํŒ” ์†์žฌ์ฃผ ์„ค์ •์œผ๋กœ ๋น„์ž๋ช…ํ•˜๊ฒŒ(non-trivially) ํ™•์žฅํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋‘ ํŒ”์— MimicGen์„ ๋‘ ๋ฒˆ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํŒ” ๊ฐ„ ํ˜‘์‘์„ ๋ช…์‹œ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•ฉ๋‹ˆ๋‹ค.

8.2 ์–‘ํŒ” ์กฐ์ž‘ ์—ฐ๊ตฌ

์—ฐ๊ตฌ ์ ‘๊ทผ๋ฒ• DexMimicGen๊ณผ์˜ ์ฐจ์ด
ALOHA ์ €๋น„์šฉ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์— ์ดˆ์ , ์ž๋™ ์ƒ์„ฑ ์—†์Œ
HumanPlus ํœด๋จผ ์‰๋„์ž‰ + ๋ชจ๋ฐฉ ์‹ค์‹œ๊ฐ„ ์ถ”์ข…, ์˜คํ”„๋ผ์ธ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ๊ณผ ๋ชฉ์  ๋‹ค๋ฆ„
BiGym ์–‘ํŒ” ๋ฒค์น˜๋งˆํฌ DexMimicGen์ด BiGym ํƒœ์Šคํฌ์—๋„ ์ ์šฉ
OmniH2O ํœด๋จผ-ํœด๋จธ๋…ธ์ด๋“œ ํ…”๋ ˆ์˜คํผ๋ ˆ์ด์…˜ DexMimicGen์ด ๋ฆฌํƒ€๊ฒŸํŒ… ๋ฐฉ๋ฒ• ํ™œ์šฉ

9. ์‘์šฉ ๋ฐ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ

9.1 ์‹ค์ œ ๋กœ๋ด‡ ์ ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค

1. ์ œ์กฐ์—… ์กฐ๋ฆฝ ๋ผ์ธ - ์–‘์† ํ˜‘์‘์ด ํ•„์š”ํ•œ ์ •๋ฐ€ ์กฐ๋ฆฝ - ์†Œ์ˆ˜์˜ ์‹œ๋ฒ” ํ›„ ๋Œ€๊ทœ๋ชจ ํ•™์Šต ๋ฐ์ดํ„ฐ ์ƒ์„ฑ

2. ๊ฐ€์ •์šฉ ์„œ๋น„์Šค ๋กœ๋ด‡ - ์š”๋ฆฌ, ์ฒญ์†Œ, ์ •๋ฆฌ ์ž‘์—… - Coffee ํƒœ์Šคํฌ๊ฐ€ ์ข‹์€ ์˜ˆ์‹œ

3. ๋ฌผ๋ฅ˜ ๋ถ„๋ฅ˜ - Can Sorting ํƒœ์Šคํฌ์˜ ํ™•์žฅ - ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด ๋ถ„๋ฅ˜ ์ž‘์—…

9.2 ํ›„์† ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

1. ์–ธ์–ด ์กฐ๊ฑด ํ™•์žฅ - โ€œ์™ผ์†์œผ๋กœ ๋นจ๊ฐ„ ์ปต์„ ์žก๊ณ , ์˜ค๋ฅธ์†์œผ๋กœ ํŒŒ๋ž€ ์ปต์„ ์žก์•„โ€ ๊ฐ™์€ ๋ช…๋ น ์ฒ˜๋ฆฌ - VLA (Vision-Language-Action) ๋ชจ๋ธ๊ณผ์˜ ํ†ตํ•ฉ

2. ์žฅ๊ธฐ ์ž‘์—… ์Šค์ผ€์ผ๋ง - ํ˜„์žฌ 9๊ฐœ ํƒœ์Šคํฌ โ†’ ์ˆ˜๋ฐฑ ๊ฐœ ํƒœ์Šคํฌ๋กœ ํ™•์žฅ - ํƒœ์Šคํฌ ๊ฐ„ ์ง€์‹ ์ „์ด ์—ฐ๊ตฌ

3. ์˜จ๋ผ์ธ ์ ์‘ - ์‹คํ–‰ ์ค‘ ์‹คํŒจ ๊ฐ์ง€ ๋ฐ ๋ณต๊ตฌ - ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ์ ์‘

4. ๋‹ค์–‘ํ•œ ๋กœ๋ด‡ ํ˜•์ƒ - 3๊ฐœ ์ด์ƒ์˜ ํŒ”์„ ๊ฐ€์ง„ ๋กœ๋ด‡ - ๋‹ค๋ฆฌ๋ฅผ ํ™œ์šฉํ•œ ์ „์‹  ์กฐ์ž‘

9.3 ์˜คํ”ˆ์†Œ์Šค ํ™œ์šฉ ๊ฐ€์ด๋“œ

# ํ™˜๊ฒฝ ์„ค์น˜
git clone https://github.com/ARISE-Initiative/robosuite
pip install -e robosuite

git clone https://github.com/NVlabs/dexmimicgen.git
cd dexmimicgen
pip install -e .

# ํ™˜๊ฒฝ ํ…Œ์ŠคํŠธ
python scripts/demo_random_action.py --env TwoArmThreading --render

# ์ •์ฑ… ํ•™์Šต (robomimic ์„ค์น˜ ํ•„์š”)
git clone https://github.com/ARISE-Initiative/robomimic.git -b dexmimicgen
cd robomimic
pip install -e .

# ํ•™์Šต ์„ค์ • ์ƒ์„ฑ ๋ฐ ์‹คํ–‰
python scripts/generate_training_config.py \
    --dataset_dir /path/to/datasets \
    --config_dir /path/to/save/config \
    --output_dir /path/to/save/output

python scripts/train.py --config /path/to/config

10. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก 

10.1 ํ•ต์‹ฌ ๊ธฐ์—ฌ ์š”์•ฝ

๊ธฐ์—ฌ ์„ค๋ช…
์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„๋ฅ˜๋ฒ• ๋ณ‘๋ ฌ, ํ˜‘์‘, ์ˆœ์ฐจ์˜ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ์–‘ํŒ” ์กฐ์ž‘ ํŒจํ„ด ์ฒด๊ณ„ํ™”
๋น„๋™๊ธฐ ์‹คํ–‰ ์ „๋žต ํŒ”๋ณ„ ๋…๋ฆฝ ์•ก์…˜ ํ๋กœ ์œ ์—ฐํ•œ ์‹คํ–‰ ๊ฐ€๋Šฅ
๋™๊ธฐํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜ ํ˜‘์‘ ์„œ๋ธŒํƒœ์Šคํฌ์—์„œ ์‹œ๊ณต๊ฐ„์  ์ •๋ ฌ ๋ณด์žฅ
๋Œ€๊ทœ๋ชจ ๋ฒค์น˜๋งˆํฌ 3๊ฐ€์ง€ ๋กœ๋ด‡, 9๊ฐ€์ง€ ํƒœ์Šคํฌ, 21K+ ๋ฐ๋ชจ
Real2Sim2Real ์‹ค์„ธ๊ณ„ ํœด๋จธ๋…ธ์ด๋“œ์—์„œ 90% ์„ฑ๊ณต๋ฅ  ๋‹ฌ์„ฑ

10.2 ๋กœ๋ด‡๊ณตํ•™์ž๋ฅผ ์œ„ํ•œ ํ…Œ์ดํฌ์–ด์›จ์ด

  1. ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ: ์†Œ์ˆ˜์˜ ๊ณ ํ’ˆ์งˆ ์ธ๊ฐ„ ์‹œ์—ฐ์ด ๋Œ€๊ทœ๋ชจ ์ €ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ๋ณด๋‹ค ๊ฐ€์น˜ ์žˆ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  2. ํƒœ์Šคํฌ ๋ถ„ํ•ด์˜ ์ค‘์š”์„ฑ: ๋ณต์žกํ•œ ์–‘ํŒ” ํƒœ์Šคํฌ๋„ ์„œ๋ธŒํƒœ์Šคํฌ๋กœ ๋ถ„ํ•ดํ•˜๋ฉด ๊ด€๋ฆฌ ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค.

  3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๊ฐ€์น˜: ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ์˜ ์ž๋™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์€ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์ž…๋‹ˆ๋‹ค.

  4. ์ •์ฑ… ์„ ํƒ: Diffusion Policy๊ฐ€ ์–‘ํŒ” ์†์žฌ์ฃผ ์กฐ์ž‘์—์„œ BC-RNN, BC-RNN-GMM์„ ์ƒํšŒํ•ฉ๋‹ˆ๋‹ค.

  5. ์Šค์ผ€์ผ๋ง ๊ณ ๋ ค: 1000๊ฐœ ๋ฐ๋ชจ๊ฐ€ ๋Œ€๋ถ€๋ถ„์˜ ํƒœ์Šคํฌ์—์„œ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ๊ทธ ์ด์ƒ์€ ์ˆ˜ํ™• ์ฒด๊ฐ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.

10.3 ๋ฏธ๋ž˜ ์ „๋ง

DexMimicGen์€ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์˜ ์–‘ํŒ” ์กฐ์ž‘ ํ•™์Šต์—์„œ ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ค‘์š”ํ•œ ์ฒซ๊ฑธ์Œ์ž…๋‹ˆ๋‹ค. ์•ž์œผ๋กœ ์–ธ์–ด ์กฐ๊ฑด, ์˜จ๋ผ์ธ ์ ์‘, ๋” ๋ณต์žกํ•œ ํƒœ์Šคํฌ๋กœ์˜ ํ™•์žฅ์ด ๊ธฐ๋Œ€๋ฉ๋‹ˆ๋‹ค.

ํŒŒ์ธ๋งŒ์ด ๋งํ–ˆ๋“ฏ์ด, โ€œ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“ค ์ˆ˜ ์—†๋Š” ๊ฒƒ์€ ์ดํ•ดํ•˜์ง€ ๋ชปํ•œ ๊ฒƒ์ด๋‹คโ€. DexMimicGen์€ ๋กœ๋ด‡์ด ์ธ๊ฐ„์˜ ์†์žฌ์ฃผ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š”(์žฌํ˜„ํ•˜๋Š”) ๋ฐฉ๋ฒ•์„ ํ•œ ๋‹จ๊ณ„ ๋ฐœ์ „์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ง„์ •ํ•œ ์ดํ•ด, ์ฆ‰ ์™œ ์ด ์›€์ง์ž„์ด ํšจ๊ณผ์ ์ธ์ง€๋ฅผ ์•„๋Š” ๊ฒƒ์€ ์•„์ง ๊ฐˆ ๊ธธ์ด ๋ฉ‰๋‹ˆ๋‹ค. ๊ทธ๊ฒƒ์ด ์šฐ๋ฆฌ ๋กœ๋ด‡๊ณตํ•™์ž๋“ค์ด ํ’€์–ด์•ผ ํ•  ๋‹ค์Œ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.


์ฐธ๊ณ ๋ฌธํ—Œ

์ฃผ์š” ์ฐธ๊ณ ๋ฌธํ—Œ๋งŒ ์„ ๋ณ„ํ•˜์—ฌ ์ˆ˜๋กํ•ฉ๋‹ˆ๋‹ค:

  1. MimicGen: Mandlekar et al., โ€œMimicGen: A Data Generation System for Scalable Robot Learning Using Human Demonstrations,โ€ CoRL 2023
  2. Diffusion Policy: Chi et al., โ€œDiffusion Policy: Visuomotor Policy Learning via Action Diffusion,โ€ RSS 2023
  3. OmniH2O: He et al., โ€œOmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning,โ€ arXiv 2024
  4. BiGym: Chernyadev et al., โ€œBiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark,โ€ arXiv 2024
  5. RoboMimic: Mandlekar et al., โ€œWhat Matters in Learning from Offline Human Demonstrations for Robot Manipulation,โ€ CoRL 2021

โ›๏ธ Dig Review

โ›๏ธ Dig โ€” Go deep, uncover the layers. Dive into technical detail.

์„œ๋ก 

๋กœ๋ด‡ ์กฐ์ž‘์—์„œ ๋ชจ๋ฐฉ ํ•™์Šต์€ ์‚ฌ๋žŒ์˜ ์‹œ๋ฒ”์„ ํ•™์Šต์— ํ™œ์šฉํ•ด ๋ณต์žกํ•œ ๋™์ž‘์„ ์ตํžˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํŠนํžˆ ์–‘์†์„ ์ด์šฉํ•œ ์ •๋ฐ€ ์กฐ์ž‘ ๊ณผ์ œ์—์„œ๋Š” ์‹œ์—ฐ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋‘ ํŒ”๊ณผ ๊ฐ ์†๊ฐ€๋ฝ์„ ๋™์‹œ์— ์กฐ์ž‘ํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜์œผ๋กœ ์†Œ์ˆ˜์˜ ์‚ฌ๋žŒ ์‹œ์—ฐ์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜๋งŒ ๊ฐœ์˜ ์–‘์† ์กฐ์ž‘ ๊ถค์ ์„ ์ƒ์„ฑํ•˜๋Š” DexMimicGen ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด Tray Lift ๊ณผ์ œ์—์„œ ์‚ฌ๋žŒ ์กฐ์ž‘์‚ฌ๊ฐ€ ๋‘ ์†์œผ๋กœ ํŠธ๋ ˆ์ด๋ฅผ ๋“ค์–ด์˜ฌ๋ฆฌ๋Š” ์‹œ์—ฐ์„ 5ํšŒ๋งŒ ๊ธฐ๋กํ•ด๋„, DexMimicGen์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์ด๋ฅผ ๋ณ€ํ˜•ใƒป์žฌ์ƒํ•˜์—ฌ 1๋งŒ ๊ฐœ ์ด์ƒ์˜ ์„ฑ๊ณต ๊ถค์ ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹คใ€10โ€ ใ€‘.

DexMimicGen ๊ฐœ์š”: (์™ผ์ชฝ) ์‚ฌ๋žŒ-๋กœ๋ด‡ ์›๊ฒฉ ์กฐ์ข…(teleoperation)์œผ๋กœ ์†Œ์ˆ˜์˜ ๋ฐ๋ชจ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ , (์ค‘๊ฐ„) ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์—์„œ ๋ฐ๋ชจ๋ฅผ ๋ณ€ํ™˜ยท์žฌ์ƒํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ ๋ฐ๋ชจ๋ฅผ ํ•ฉ์„ฑํ•˜๋ฉฐ, (์˜ค๋ฅธ์ชฝ) ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ •์ฑ…์„ ํ•™์Šตํ•ด ์‹ค์ œ ๋กœ๋ด‡์— ์ ์šฉํ•œ๋‹ค. ์ด ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด 60ํšŒ์˜ ์†Œ์Šค ์‹œ์—ฐ์—์„œ 21,000๊ฐœ ์ด์ƒ์˜ ๋ฐ๋ชจ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์—ˆ๊ณ , ํ•™์Šต๋œ ์ •์ฑ…์€ ์‹ค์ œ ๋กœ๋ด‡์˜ ์บ” ๋ถ„๋ฅ˜ ๊ณผ์ œ(Real-World Can Sorting)์—์„œ ์„ฑ๊ณต์„ ๋ณด์˜€๋‹ค.

  • ๋ชจ๋ฐฉ ํ•™์Šต๊ณผ ๋ฐ์ดํ„ฐ ๋ณ‘๋ชฉ: ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋‹จ์ผ ํŒ” ์กฐ์ž‘์—์„œ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์˜ ๋Œ€๊ทœ๋ชจ ์‹œ์—ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•„ ๋›ฐ์–ด๋‚œ ์„ฑ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์–‘์† ์กฐ์ž‘์—์„œ๋Š” ์‹œ์—ฐ์ž์—๊ฒŒ ๊ฐ€ํ•ด์ง€๋Š” ๋ถ€๋‹ด์ด ํฌ๊ณ , ํŠน์ˆ˜ํ•œ ์›๊ฒฉ ์กฐ์ข… ์žฅ๋น„๊ฐ€ ํ•„์š”ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ๋” ํž˜๋“ค๋‹ค. DexMimicGen์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•ด ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ์‚ฌ๋žŒ์˜ ์†Œ์ˆ˜ ์‹œ์—ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ๋ชจ ๋ณ€ํ™˜(Demonstration Transformation) ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•ด ์ƒˆ๋กœ์šด ์ดˆ๊ธฐ ์ƒํƒœ์™€ ํ™˜๊ฒฝ์—์„œ ๊ถค์ ์„ ์ƒ์„ฑํ•˜๋ฉฐ, ์‚ฌ๋žŒ์ด ์•„๋‹Œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๊ฐ€ ๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ โ€œ์Šค์Šค๋กœโ€ ๋งŒ๋“ ๋‹ค. ์ด ๋ฐฉ์‹์€ ์˜จ๋ผ์ธ์œผ๋กœ ์‹ค์ œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ถค์ ์„ ์–ป๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋“  ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํƒ€๋‹นํ•˜๋‹ค.
  • ์ฃผ์š” ๊ธฐ์—ฌ: DexMimicGen์€ (1) ์ ์€ ์ˆ˜์˜ ์ธ๊ฐ„ ์‹œ์—ฐ์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜๋งŒ ๊ฐœ์˜ ์–‘์† ์กฐ์ž‘ ๊ถค์ ์„ ์ž๋™ ์ƒ์„ฑํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋ฉฐ, (2) ๊ฐ ํŒ”์˜ ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ๋น„๋™๊ธฐ์ ์œผ๋กœ ์‹คํ–‰ํ•˜๋Š” ๊ธฐ๋ฒ•, ๋‘ ํŒ” ๋™์ž‘์„ ๋™๊ธฐํ™”ํ•˜๋Š” ์ „๋žต, ์ˆœ์„œ ์ œ์•ฝ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๋“ฑ ๋‹คํŒ” ์กฐ์ž‘ ํŠนํ™” ์„ค๊ณ„๋ฅผ ๋„์ž…ํ–ˆ๋‹ค. ๋˜ํ•œ (3) ์„ธ ์ข…๋ฅ˜์˜ ๋กœ๋ด‡ ์ฒด๊ณ„(ํ‰ํ–‰ ์ฃ„๋ฅด ๊ทธ๋ฆฌํผ๋ฅผ ๋‹จ 2ํŒ”, ์„ฌ์„ธํ•œ ํ•ธ๋“œ๋ฅผ ๋‹จ 2ํŒ”, ๊ทธ๋ฆฌ๊ณ  ์ „์‹  ํœด๋จธ๋…ธ์ด๋“œ 1๋Œ€)์— ๊ฑธ์นœ 9๊ฐ€์ง€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ณผ์ œ๋ฅผ ์ œ์‹œํ•˜๊ณ , (4) ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์‹ค์ œ ๋กœ๋ด‡์—์„œ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์€ ๊ณต๊ฐœ๋  ์˜ˆ์ •์ด๋‹ค.

๋ฐฉ๋ฒ•

DexMimicGen์˜ ํ•ต์‹ฌ์€ ์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ•ด์™€ ๊ถค์  ๋ณ€ํ™˜์ด๋‹ค. ๋จผ์ € ์‚ฌ๋žŒ ์‹œ์—ฐ์„ ํŒ”๋ณ„ ์„œ๋ธŒํƒœ์Šคํฌ(segment)๋กœ ๋ถ„ํ• ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด โ€˜์บ” ๋ถ„๋ฅ˜โ€™ ๊ณผ์ œ์—์„œ ์™ผ์†์€ ์บ”์„ ์ง‘๋Š” ๋™์ž‘, ์˜ค๋ฅธ์†์€ ์“ฐ๋ ˆ๊ธฐํ†ต์— ๋„ฃ๋Š” ๋™์ž‘์œผ๋กœ ๋‚˜๋‰  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ ์„œ๋ธŒํƒœ์Šคํฌ๋Š” ํ•˜๋‚˜์˜ ๊ฐ์ฒด์˜ ์ขŒํ‘œ๊ณ„์—์„œ ์ •์˜๋œ ๊ถค์ (segment)์œผ๋กœ ๊ฐ„์ฃผ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ๋ถ„ํ• ํ•œ ๋’ค, ์ƒˆ๋กœ์šด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ์„œ๋ธŒํƒœ์Šคํฌ ๊ถค์ ์„ ๊ธฐ์ค€ ๊ฐ์ฒด(reference object)์˜ ์œ„์น˜์— ๋งž์ถฐ ๋ณ€ํ™˜ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํŠธ๋ ˆ์ด๋ฅผ ๋“ค๋ ค๋Š” ๊ณผ์ œ์—์„œ ํŠธ๋ ˆ์ด์˜ ์œ„์น˜๊ฐ€ ์‹œ์—ฐ ๋ฐ์ดํ„ฐ์™€ ๋‹ฌ๋ผ์ง€๋ฉด, ํŠธ๋ ˆ์ด์— ๋Œ€ํ•œ ์ƒ๋Œ€ ๋ณ€ํ™˜(ํšŒ์ „ ๋ฐ ์ด๋™)์„ ๊ณ„์‚ฐํ•ด ์‚ฌ๋žŒ์˜ ๋๋‹จ ๊ถค์ ์„ ์ด๋™์‹œํ‚ค๋Š” ์‹์ด๋‹ค. ์ด๋•Œ ํ•ธ๋“œ ๊ด€์ ˆ์˜ ๋™์ž‘์€ ์ฃผ๋กœ ๋๋‹จ์˜ ์›€์ง์ž„์— ์ƒ๋Œ€์ ์ธ ๋ฐฉ์‹์ด๋ฏ€๋กœ, ์†๊ฐ€๋ฝ ๋™์ž‘์€ ์‹œ์—ฐ ๋ฐ์ดํ„ฐ ๊ทธ๋Œ€๋กœ ์žฌ์ƒํ•˜์—ฌ ๊ตฌํ˜„ํ•œ๋‹ค.

๊ฐ ํŒ”์€ ๋น„๋™๊ธฐ ์‹คํ–‰(asynchronous execution)๋œ๋‹ค. ์ฆ‰, ๋‘ ํŒ”์˜ ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ๋๋‚˜๋Š” ์‹œ์ ์ด ๋ฐ˜๋“œ์‹œ ์ผ์น˜ํ•˜์ง€ ์•Š์•„๋„ ๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ํ•œ ํŒ”์ด ๋ฌผ์ฒด๋ฅผ ๋จผ์ € ์ง‘์–ด ๋“ค ๋•Œ, ๋‹ค๋ฅธ ํŒ”์€ ์•„์ง ์ค€๋น„ ๋‹จ๊ณ„์— ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐ ํŒ”๋งˆ๋‹ค ๋™์ž‘ ํ(queue)๋ฅผ ์œ ์ง€ํ•˜๊ณ , ํ๊ฐ€ ๋น„๋ฉด ๋‹ค์Œ ์„œ๋ธŒํƒœ์Šคํฌ ๊ถค์ ์„ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฐฉ์‹์œผ๋กœ ๋‘ ํŒ”์„ ๋ณ‘๋ ฌ๋กœ ์ฒ˜๋ฆฌํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋‘ ํŒ”์˜ ๋™์ž‘์„ ํ•˜๋‚˜์˜ ๊ณ ์ • ์ˆœ์„œ์— ๋งž์ถœ ํ•„์š” ์—†์ด ์„œ๋กœ ๋…๋ฆฝ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค.

flowchart TB
    subtask["์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•"] --> parallel["๋ณ‘๋ ฌ Parallel"]
    subtask --> coord["ํ˜‘๋™ Coordination"]
    subtask --> seq["์ˆœ์ฐจ Sequential"]
    parallel --> async["๊ฐ ํŒ” ๋…๋ฆฝ ์‹คํ–‰"]
    coord --> sync["๋‘ ํŒ” ๋™๊ธฐํ™” ์‹คํ–‰"]
    seq --> order["์ˆœ์„œ ๋ณด์žฅ ์‹คํ–‰"]

์œ„ ๋‹ค์ด์–ด๊ทธ๋žจ: DexMimicGen์ด ๋‹ค๋ฃจ๋Š” ์„œ๋ธŒํƒœ์Šคํฌ ์œ ํ˜•. ์™ผ์ชฝ(๋ณ‘๋ ฌ) ์ฒ˜๋ฆฌ๋Š” ๋‘ ํŒ”์ด ๊ฐ์ž ๋…๋ฆฝ์ ์ธ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ๋•Œ, ์ค‘๊ฐ„(ํ˜‘๋™) ์ฒ˜๋ฆฌ๋Š” ๋‘ ํŒ”์ด ํ•จ๊ป˜ ํ˜‘๋ ฅํ•ด์•ผ ํ•  ๋•Œ, ์˜ค๋ฅธ์ชฝ(์ˆœ์ฐจ) ์ฒ˜๋ฆฌ๋Š” ํ•œ ํŒ”์˜ ๋™์ž‘ ์™„๋ฃŒ ํ›„์— ๋‹ค๋ฅธ ํŒ” ๋™์ž‘์ด ์ด์–ด์ ธ์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๋œปํ•œ๋‹ค. DexMimicGen์€ ๋ณ‘๋ ฌ ์„œ๋ธŒํƒœ์Šคํฌ์— ๋น„๋™๊ธฐ ์‹คํ–‰, ํ˜‘๋™ ์„œ๋ธŒํƒœ์Šคํฌ์— ๋™๊ธฐํ™”๋œ ์‹คํ–‰, ์ˆœ์ฐจ ์„œ๋ธŒํƒœ์Šคํฌ์— ์ˆœ์„œ ์ œ์•ฝ์„ ์ ์šฉํ•œ๋‹ค.

ํ˜‘๋™ ์„œ๋ธŒํƒœ์Šคํฌ์˜ ์˜ˆ๋กœ๋Š” ๋‘ ํŒ”์ด ํ•จ๊ป˜ ๋ฌผ์ฒด๋ฅผ ์›€์ง์ด๊ฑฐ๋‚˜ ๋‚˜์‚ฌ๋ฅผ ์กฐ๋ฆฝํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. ์ด๋•Œ ๋‘ ํŒ”์˜ ๋๋‹จ ์œ„์น˜๊ฐ€ ์„œ๋กœ ์ผ์น˜๋œ ํƒ€์ด๋ฐ์— ์›€์ง์—ฌ์•ผ ํ•˜๋ฏ€๋กœ, DexMimicGen์€ ํ˜‘๋™ ๊ตฌ๊ฐ„์—์„œ๋Š” ๋™๊ธฐํ™” ์ „๋žต์„ ์“ด๋‹ค. ์ฆ‰, ๋‘ ํŒ”์ด ๋™์‹œ์— ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ๋งˆ์น˜๋„๋ก ๊ฐ ํŒ”์ด ๋‚จ์€ ๋™์ž‘ ์ˆ˜๊ฐ€ ๊ฐ™์•„์งˆ ๋•Œ๊นŒ์ง€ ๋Œ€๊ธฐ์‹œ์ผœ ํƒ€์ด๋ฐ์„ ๋งž์ถ˜๋‹ค. ๋˜ํ•œ ๋‘ ํŒ”์˜ ๊ถค์ ์€ ๊ฐ™์€ ๊ธฐ์ค€๊ฐ์ฒด ๋ณ€ํ™˜์„ ์‚ฌ์šฉํ•ด ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜(Transform) ์•„์˜ˆ ์‹œ์—ฐ ๊ถค์ ์„ ๊ทธ๋Œ€๋กœ ์žฌ์ƒ(Replay)ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌผ๊ฑด์„ ํ•œ ์†์—์„œ ๋‹ค๋ฅธ ์†์œผ๋กœ ๋„˜๊ฒจ์ค„ ๋•Œ๋Š” ์›์†Œ์Šค ๊ถค์ ์„ ๊ทธ๋Œ€๋กœ ๋”ฐ๋ผ๊ฐ€๋Š” ๊ฒƒ์ด ๊ถค์  ์•ˆ์ •์„ฑ ์ธก๋ฉด์—์„œ ์œ ๋ฆฌํ•˜๋‹ค๊ณ  ๋ณด๊ณ  ์žˆ๋‹ค.

์ˆœ์ฐจ ์„œ๋ธŒํƒœ์Šคํฌ๋Š” โ€œ๋จผ์ € A ์ž‘์—…์„ ํ•œ ๋’ค B ์ž‘์—…์„ ํ•ด์•ผ ํ•˜๋Š”โ€ ๊ฒฝ์šฐ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌผ ๋ถ“๊ธฐ(Pouring) ๊ณผ์ œ์—์„œ๋Š” ํ•œ ์†์œผ๋กœ ์ปต์— ๊ณต์„ ๋ถ“๊ณ  ๋‚œ ๋’ค, ๋‹ค๋ฅธ ์†์œผ๋กœ ์ปต์„ ํ…Œ์ด๋ธ” ์œ„์— ๋†“์•„์•ผ ํ•œ๋‹ค. ์ด๋•Œ ๊ผญ ์ง€์ผœ์•ผ ํ•  ์„ ํ›„ ๊ด€๊ณ„๋ฅผ ์œ„ํ•ด DexMimicGen์€ ์ˆœ์ฐจ ์ œ์•ฝ์„ ๋‘”๋‹ค. ์ฆ‰, ํ›„์† ์„œ๋ธŒํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ํŒ”์€ ๋‹ค๋ฅธ ํŒ”์˜ ์„ ํ–‰ ์„œ๋ธŒํƒœ์Šคํฌ๊ฐ€ ์™„๋ฃŒ๋  ๋•Œ๊นŒ์ง€ ๊ธฐ๋‹ค๋ฆฐ๋‹ค.

๋ชจ๋“  ์„œ๋ธŒํƒœ์Šคํฌ ๊ถค์ ์€ ์—ด๋ฆฐ ๋ฃจํ”„ ๋ฐฉ์‹์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๋‚ด์—์„œ ์‹คํ–‰๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋กœ๋ณด์Šค์œ„ํŠธ(RoboSuite)์™€ MuJoCo ๋ฌผ๋ฆฌ์—”์ง„์„ ์ด์šฉํ•ด ๊ฐ ์ข… ๋กœ๋ด‡ ๋ชจ๋ธ(ํ‰ํ–‰ ์ฃ„๋ฅด ๊ทธ๋ฆฌํผ ์žฅ์ฐฉ 2ํŒ”, ์„ฌ์„ธํ•œ ํ•ธ๋“œ ์žฅ์ฐฉ 2ํŒ”, GR-1 ํœด๋จธ๋…ธ์ด๋“œ 1๋Œ€)์„ ๊ตฌํ˜„ํ–ˆ๋‹ค. Panda ๋กœ๋ด‡ํŒ”์—๋Š” ์šด์˜๊ณต๊ฐ„ ์ œ์–ด(Operational Space Control)๋ฅผ, ํœด๋จธ๋…ธ์ด๋“œ์—๋Š” ์—ญ๊ธฐ๊ตฌํ•™ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•ด ์ตœ์ข… ๊ด€์ ˆ ํ† ํฌ๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ์‚ฌ๋žŒ์ด ์กฐ์ข…ํ•œ ์›์‹œ ์‹œ์—ฐ ๋ฐ์ดํ„ฐ(์ž์„ธ, ์†๋™์ž‘ ๋“ฑ)๋Š” iPhone์ด๋‚˜ VisionPro ๊ธฐ๋ฐ˜ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋˜๋ฉฐ, ์ด๋Š” DexMimicGen์˜ ์†Œ์Šค ๋ฐ๋ชจ๋กœ ์“ฐ์ธ๋‹ค.

์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

์‹คํ—˜ ์„ค์ •: ๊ฐ ๊ณผ์ œ๋ณ„๋กœ ํ‰ํ–‰ ๊ทธ๋ฆฌํผ๋ฅผ ์“ด ๊ฒฝ์šฐ 10ํšŒ, ํ•ธ๋“œ๋ฅผ ์“ด ๊ฒฝ์šฐ 5ํšŒ์˜ ์ธ๊ฐ„ ์‹œ์—ฐ์„ ์›๊ฒฉ์กฐ์ข…์œผ๋กœ ์ˆ˜์ง‘ํ–ˆ๋‹ค. DexMimicGen์„ ์ด์šฉํ•ด ๊ณผ์ œ๋‹น 1000๊ฐœ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ๋ชจ๋ฅผ ์ƒ์„ฑํ•œ ํ›„, ์ด๋ฅผ ํ–‰๋™ ๋ณต์ œ(Behavioral Cloning)๋กœ ํ•™์Šต์‹œ์ผฐ๋‹ค. ํ•™์Šต์—๋Š” ์‹œ๊ฐ ๊ด€์ธก์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” RNN ๊ธฐ๋ฐ˜ ์ •์ฑ…, GMM(ํ˜ผํ•ฉ ๊ฐ€์šฐ์‹œ์•ˆ) ์•ก์…˜ ํ—ค๋“œ๋ฅผ ์“ด RNN, ๊ทธ๋ฆฌ๊ณ  ์ตœ๊ทผ ๋ฐฉ๋ฒ•์ธ ํ™•์‚ฐ ์ •์ฑ…(Diffusion Policy)์„ ์‚ฌ์šฉํ–ˆ๋‹ค. ๊ฐ ์‹คํ—˜์€ 3๊ฐ€์ง€ ๋‹ค๋ฅธ ์‹œ๋“œ๋กœ ๋ฐ˜๋ณตํ•˜์—ฌ ์„ฑ๊ณต๋ฅ ์„ ๊ณ„์‚ฐํ–ˆ๋‹ค.

๊ณผ์ œ: ์ด 9๊ฐœ ๊ณผ์ œ(3๊ฐ€์ง€ ๋กœ๋ด‡ ร— 3๊ณผ์ œ)์—์„œ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ Threading, Piece Assembly, Box Cleanup, Coffee ๋“ฑ ๊ณ ์ •๋ฐ€ ์กฐ์ž‘ ๊ณผ์ œ์™€, Drawer Cleanup ๊ฐ™์€ ๊ด€์ ˆ ๊ฐ์ฒด ์กฐ์ž‘, Transport ๊ฐ™์€ ์žฅ๊ธฐ ๊ณผ์ œ๋ฅผ ํฌํ•จํ•œ๋‹ค. ๋ช‡๋ช‡ ๊ณผ์ œ๋Š” ๋‘ ํŒ” ํ˜‘๋™(Tray Lift, Can Sorting, Transport ๋“ฑ)์ด๋‚˜ ์ˆœ์ฐจ์  ์กฐ์ž‘(Pouring, Coffee, Piece Assembly ๋“ฑ)์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์ด ์™ธ์—๋„ ์ดˆ๊ธฐ ์ƒํƒœ ๋ถ„ํฌ๋ฅผ ๋„“ํžŒ ๋ณ€ํ˜• ๊ณผ์ œ๋“ค์„ ์ถ”๊ฐ€ํ•˜์—ฌ, ๋” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ํšจ๊ณผ๋ฅผ ์‹คํ—˜ํ–ˆ๋‹ค.

์„ฑ๋Šฅ ๊ฒฐ๊ณผ: DexMimicGen์˜ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…์€ ์›์‹œ ๋ฐ๋ชจ๋งŒ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ๋ณด๋‹ค ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด Drawer Cleanup ๊ณผ์ œ์—์„œ๋Š” ์„ฑ๊ณต๋ฅ ์ด 0.7%์—์„œ 76.0%๋กœ, Threading์€ 1.3%์—์„œ 69.3%๋กœ, Piece Assembly๋Š” 3.3%์—์„œ 80.7%๋กœ ๋†’์•„์กŒ๋‹ค. ์ฆ‰, ์ˆ˜์‹ญ ํšŒ์˜ ์‹œ์—ฐ๋งŒ์œผ๋กœ๋Š” ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋˜ ์กฐ์ž‘๋„ DexMimicGen์˜ ์ฆ๊ฐ•๋œ ๋ฐ์ดํ„ฐ๋กœ๋Š” ์ƒ๋‹นํžˆ ์ž˜ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๊ฐ ๊ณผ์ œ์— ๋งž๊ฒŒ ์ดˆ๊ธฐ ์ƒํƒœ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋Š˜๋ฆฐ ์‹คํ—˜์—์„œ๋„ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ถ”๊ฐ€๋กœ, BiGym์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํœด๋จธ๋…ธ์ด๋“œ ๋ชจ๋ฐ”์ผ ์กฐ์ž‘ ๋ฒค์น˜๋งˆํฌ์˜ FlipCup, DishwasherLoadPlates, CupBoardsCloseAll ๊ณผ์ œ์— ๊ฐ๊ฐ 1000๊ฐœ ๋ฐ๋ชจ๋ฅผ ์ƒ์„ฑํ•ด ์„ฑ๊ณต๋ฅ  29.1%, 43.6%, 76.4%๋ฅผ ์–ป์—ˆ๋‹ค.

๊ธฐ๋ฒ• ๋น„๊ต ๋ฐ ๋ถ„์„: ๋ฐ๋ชจ-๋…ธ์ด์ฆˆ(Demo-Noise)๋ผ๋Š” ๊ฐ„๋‹จํ•œ ๋Œ€์กฐ๊ตฐ(์›์‹œ ๋ฐ๋ชจ์— ๋™์ž‘ ๋…ธ์ด์ฆˆ๋งŒ ์ฃผ์ž…)์„ ๋น„๊ตํ•ด ๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, DexMimicGen์ด ์ƒ์„ฑํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…์€ ๋ชจ๋“  ๊ณผ์ œ์—์„œ ๋ฐ๋ชจ-๋…ธ์ด์ฆˆ ๋Œ€๋น„ 58% ์ด์ƒ ๋†’์€ ์„ฑ๊ณต๋ฅ ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” DexMimicGen์ด ๋” ๋‹ค์–‘ํ•œ ์ดˆ๊ธฐ ์ƒํƒœ์™€ ๊ฐ์ฒด ๋ฐฐ์น˜๋ฅผ ๊ฒฝํ—˜์‹œ์ผœ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฐ์ดํ„ฐ ์–‘์˜ ํšจ๊ณผ๋„ ํ™•์ธํ–ˆ๋‹ค. ๋ฐ์ดํ„ฐ ํฌ๊ธฐ๋ฅผ 100โ†’500โ†’1000๊ฐœ๋กœ ๋Š˜๋ฆฌ๋ฉด ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๊ณ , ์ดํ›„ 5000๊ฐœ๋กœ ๋Š˜๋ฆฐ ๊ฒฝ์šฐ์—๋Š” ๊ณผ์ œ์— ๋”ฐ๋ผ ์•ฝ๊ฐ„์˜ ์„ฑ๋Šฅ ์ •์ฒด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค.

ํ˜‘๋™ ์„œ๋ธŒํƒœ์Šคํฌ์˜ ๋ณ€ํ™˜ ๋ฐฉ์‹(Transform vs Replay)๋„ ๊ฒ€์ฆํ–ˆ๋‹ค. ๋ฌผ๊ฑด์„ ๋„˜๊ฒจ์ฃผ๋Š” ๊ณผ์ œ(Transport)์—์„œ๋Š” Replay ๋ฐฉ์‹์ด 63.3%์˜ ์„ฑ๊ณต๋ฅ ๋กœ 46.0%์˜ Transform๋ณด๋‹ค ๋†’์•˜๊ณ , ์บ” ๋ถ„๋ฅ˜ ๊ณผ์ œ(Can Sorting)์—์„œ๋Š” ๋‘ ๋ฐฉ๋ฒ•์ด ๊ฑฐ์˜ ๋น„์Šทํ–ˆ๋‹ค(97.3% vs 98.6%). ๋”ฐ๋ผ์„œ ์ €์ž๋“ค์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์†๋„˜๊ฒจ์ฃผ๊ธฐ์™€ ๊ฐ™์€ ํ˜‘๋™ ๊ตฌ๊ฐ„์—๋Š” Replay๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ˆœ์ฐจ ์ œ์•ฝ์˜ ์œ ํšจ์„ฑ๋„ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ฐ ํŒ”์— ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ์—ฐ์„ ํ˜ผํ•ฉํ•˜์—ฌ ์ƒ์„ฑํ•  ๋•Œ, ์ˆœ์ฐจ ์ œ์•ฝ์„ ์ ์šฉํ•˜๋ฉด ์ ์šฉํ•˜์ง€ ์•Š์„ ๋•Œ๋ณด๋‹ค ์ •์ฑ… ์„ฑ๋Šฅ์ด ๊ฐœ์„ ๋˜์—ˆ๋‹ค(์˜ˆ: Drawer 50.7% vs 48.0%, Pouring 88.7% vs 76.7%).

์‹ค์ œ ๋กœ๋ด‡ ๋ฐฐํฌ: DexMimicGen์€ ๋””์ง€ํ„ธ ํŠธ์œˆ(real-to-sim) ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ์‹ค์ œ ๋กœ๋ด‡์—์„œ๋„ ์ ์šฉ๋˜์—ˆ๋‹ค. GR-1 ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์— ๋‘ ๋Œ€์˜ 6์ถ• ํ•ธ๋“œ๋ฅผ ์žฅ์ฐฉํ•˜๊ณ , ์‹ค์ œ ์ž‘์—…์žฅ๊ณผ ๋™์ผํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์„ ๋งŒ๋“  ๋’ค(๊ฐ์ฒด ์œ„์น˜ ์ธ์‹์„ ํ†ตํ•ด ์ดˆ๊ธฐํ™”), ์บ” ๋ถ„๋ฅ˜ ๊ณผ์ œ์—์„œ ์›์‹œ ๋ฐ๋ชจ 4๊ฐœ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ์‹œ๋ฎฌ์—์„œ 40๊ฐœ์˜ ์ƒˆ ๋ฐ๋ชจ๋ฅผ ์ƒ์„ฑํ–ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…์€ ์‹ค์ œ ์‹œํ—˜์—์„œ ์บ”์„ ์ •ํ™•ํžˆ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์ง€๋งŒ, ์›์‹œ ๋ฐ๋ชจ๋งŒ์œผ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…์€ ๋ชจ๋‘ ์‹คํŒจํ–ˆ๋‹ค. ์ด๋Š” DexMimicGen์˜ ์ž๋™ํ™”๋œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์ด ์‹ค์ œ ๋กœ๋ด‡ ํ•™์Šต์—๋„ ํšจ๊ณผ์ ์ž„์„ ๋ณด์—ฌ์ค€๋‹ค.

๋น„ํŒ์  ๊ณ ์ฐฐ

์žฅ์ : DexMimicGen์€ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•œ ๋ณต์žกํ•œ ์–‘์† ์กฐ์ž‘์—์„œ๋„ ์‚ฌ๋žŒ ์ˆ˜์ง‘ ๋ถ€๋‹ด์„ ํฌ๊ฒŒ ์ค„์ด๋Š” ํ˜์‹ ์  ๋ฐฉ๋ฒ•์ด๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ์ดํ„ฐ ์ƒ์„ฑ๋น„์šฉ์ด ๊ฑฐ์˜ ๋“ค์ง€ ์•Š์œผ๋ฉฐ, ์ƒ์„ฑ๋œ ๊ถค์ ์€ ์‹ค์ œ ๋ฌผ๋ฆฌ ๋ชจ๋ธ์—์„œ ๋‚˜์˜จ ๊ฒƒ์ด์–ด์„œ ํ˜„์‹ค์ ์ด๋‹ค. ๋˜ํ•œ ์–‘ํŒ” ํŠน์œ ์˜ ์กฐ์ • ๋ฌธ์ œ(๋น„๋™๊ธฐ, ๋™๊ธฐํ™”, ์ˆœ์„œ)๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋œ ๊ฒƒ์ด ํฐ ์žฅ์ ์ด๋‹ค. ์ €์ž๋“ค์˜ ๊ณต๊ฐœ ํ™˜๊ฒฝ๊ณผ ๋ฐ์ดํ„ฐ์…‹์€ ํ–ฅํ›„ ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ž๋“ค์ด ์‰ฝ๊ฒŒ ์ƒˆ๋กœ์šด ์–‘์† ์กฐ์ž‘ ๋ฌธ์ œ๋ฅผ ์‹คํ—˜ํ•ด๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ํ•  ๊ฒƒ์ด๋‹ค.

์•ฝ์  ๋ฐ ํ•œ๊ณ„: ๊ทธ๋Ÿฌ๋‚˜ ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„๋„ ์žˆ๋‹ค. ์ฒซ์งธ, DexMimicGen์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์—ด๋ฆฐ ๋ฃจํ”„ ๊ถค์  ์žฌ์ƒ์— ์˜์กดํ•œ๋‹ค. ์ฆ‰, ์ •์ฑ…์„ ํ•™์Šตํ•œ ํ›„์—๋„ ์‹ค์ œ ๋™์ž‘ ์ค‘ ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ์ƒํ™ฉ ๋Œ€์‘ ๋Šฅ๋ ฅ์€ ์ œํ•œ์ ์ผ ์ˆ˜ ์žˆ๋‹ค. ์„ผ์„œ ํ”ผ๋“œ๋ฐฑ์„ ํ™œ์šฉํ•œ ๋‹ซํžŒ ๋ฃจํ”„ ์ œ์–ด๋Š” ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ๊ฐ„์˜ ๋„๋ฉ”์ธ ๊ฐญ ๋ฌธ์ œ๋‹ค. ์‹ค์ œ ์„ธ๊ณ„์˜ ๋งˆ์ฐฐ, ๋งˆ์ปค ์ถ”์  ์˜ค์ฐจ ๋“ฑ์ด ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์™€ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์—, ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ทธ๋Œ€๋กœ ํ˜„์‹ค์—์„œ๋„ ์™„๋ฒฝํžˆ ์ ์šฉ๋œ๋‹ค๊ณ  ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์‹ค์ œ ์‹คํ—˜์—์„œ๋Š” ๋””์ง€ํ„ธ ํŠธ์œˆ์œผ๋กœ ์•ˆ์ „์„ ํ™•๋ณดํ–ˆ์ง€๋งŒ, ๋‹ค์–‘ํ•œ ์™ธ๋ž€์— ๊ฒฌ๋””๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ๋„๋ฉ”์ธ ๋žœ๋คํ™”๋‚˜ ์‚ฌ์ „ ์ถ”๊ฐ€ ํ•™์Šต์ด ํ•„์š”ํ•  ๊ฒƒ์ด๋‹ค. ์…‹์งธ, DexMimicGen์€ โ€œ๊ฐ์ฒด ์ค‘์‹ฌ ์„œ๋ธŒํƒœ์Šคํฌโ€๋ผ๋Š” ๊ฐ€์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ๋ณต์žกํ•œ ๊ณผ์ œ์—์„œ ์˜ฌ๋ฐ”๋ฅธ ์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ• ์ด ํ•„์š”ํ•˜๋ฉฐ, ์ด๋ฅผ ์‚ฌ๋žŒ์˜ ์ˆ˜์ž‘์—…์œผ๋กœ ํ•ด์•ผ ํ•œ๋‹ค๋ฉด ์ž๋™ํ™”๊ฐ€ ๋‚จ์€ ์ˆ™์ œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ง€๊ธˆ๊นŒ์ง€ ์ œ์‹œ๋œ ๊ณผ์ œ๋“ค์€ ์—ฐ์†์ ์œผ๋กœ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ช…์‹œ์  ๋ชฉํ‘œ๊ฐ€ ์žˆ๋Š” ๊ณ ์ •๋œ ์ž‘์—…๋“ค์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ์ž„๋ฌด(์˜ˆ: ๊ฐ‘์ž‘์Šค๋Ÿฐ ์žฅ์• ๋ฌผ ํšŒํ”ผ)์—๋Š” ์–ด๋–ป๊ฒŒ ๋Œ€์‘ํ• ์ง€ ๋ฏธ๋ฆฌ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์‘์šฉ ๋ฐ ํ™•์žฅ

์ด ์—ฐ๊ตฌ๋Š” ์‹ค์ œ ๋กœ๋ด‡ ์‹œ์Šคํ…œ์œผ๋กœ ํ™•์žฅ๋  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฐ์—…์šฉ ์กฐ๋ฆฝ ๋ผ์ธ์—์„œ ๋‘ ๋กœ๋ด‡ํŒ”์ด ํ˜‘๋™ํ•˜์—ฌ ๋ฌผ๊ฑด์„ ์šด๋ฐ˜ํ•˜๊ฑฐ๋‚˜ ์กฐ๋ฆฝํ•  ๋•Œ, DexMimicGen๊ณผ ๊ฐ™์€ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๋Œ€๋Ÿ‰์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•˜๋ฉด ํ›ˆ๋ จ ํšจ์œจ์ด ํฌ๊ฒŒ ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ณต์žกํ•œ ๊ฐ€์ •์šฉ ๋กœ๋ด‡(์˜ˆ: ํœด๋จธ๋…ธ์ด๋“œ ๊ฐ€์‚ฌ ๋กœ๋ด‡)์—๊ฒŒ๋„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ›„์† ์—ฐ๊ตฌ์—์„œ๋Š” ๋” ๋‹ค์–‘ํ•œ ํœด๋จธ๋…ธ์ด๋“œ ํ™˜๊ฒฝ(๋ชจ๋ฐ”์ผ ๋ฒ ์ด์Šค ํฌํ•จ ๋“ฑ)์—์„œ DexMimicGen์„ ์ ์šฉํ•ด ๋ณด๊ณ , ์‹ค์ œ ์„ผ์„œ ํ”ผ๋“œ๋ฐฑ์„ ํฌํ•จํ•œ ํ์‡„ํ˜• ์ •์ฑ…์ด๋‚˜ ๊ฐ•ํ™”ํ•™์Šต๊ณผ์˜ ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ๊ฐ•๊ฑด์„ฑ์„ ๋†’์ด๋Š” ๋ฐฉํ–ฅ๋„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํœด๋จธ๋…ธ์ด๋“œ ์›๊ฒฉ์กฐ์ข… ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์— ํž˜์ž…์–ด ์ดˆ๊ธฐ ์‹œ์—ฐ ์ˆ˜์ง‘์„ ๋”์šฑ ์šฉ์ดํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ , ๊ฐ์ฒด ๊ฒ€์ถœ๊ณผ ์ž์„ธ ์ถ”์ •์„ ์ž๋™ํ™”ํ•˜์—ฌ ํŒŒ์ดํ”„๋ผ์ธ์˜ ์ž์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•œ ๊ณผ์ œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, DexMimicGen์˜ ์„ค๊ณ„ ์›์น™(์„œ๋ธŒํƒœ์Šคํฌ ๋ถ„ํ•ด, ๋™๊ธฐํ™” ๋“ฑ)์„ ๋‹จ์ผ ๋กœ๋ด‡ ์ž„๋ฌด์—๋„ ์‘์šฉํ•  ์ˆ˜ ์žˆ์–ด, ๋กœ๋ด‡ ํ˜‘์—…์ด๋‚˜ ๋‹ค์ค‘ ์—์ด์ „ํŠธ ์˜์—ญ์—์„œ๋„ ์˜๊ฐ์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค.

์š”์•ฝ ๋ฐ ๊ฒฐ๋ก 

DexMimicGen์€ ์–‘ํŒ” ๋‹ค์ง€๋Šฅ ๋กœ๋ด‡ ์กฐ์ž‘์—์„œ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ์ž๋™ํ™” ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ์‹œ์Šคํ…œ์ด๋‹ค. ์‚ฌ๋žŒ์˜ ์†Œ์ˆ˜ ์‹œ์—ฐ์—์„œ ์‹œ์ž‘ํ•ด ์„œ๋ธŒํƒœ์Šคํฌ๋ณ„๋กœ ๋ถ„ํ• ใƒป๋ณ€ํ™˜ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์—์„œ ์ˆ˜๋งŒ ๊ฐœ์˜ ๊ถค์ ์„ ์ƒ์„ฑํ•จ์œผ๋กœ์จ, ํ–‰๋™ ๋ณต์ œ๋ฅผ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์„ ์–ป๋Š”๋‹ค. ๋น„๋™๊ธฐ ์‹คํ–‰, ํ˜‘๋™ ์„œ๋ธŒํƒœ์Šคํฌ ๋™๊ธฐํ™”, ์ˆœ์ฐจ์  ์ˆœ์„œ ์ œ์•ฝ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๋„์ž…ํ•ด ๋‘ ํŒ” ํŠน์œ ์˜ ํ˜‘์—… ๋™์ž‘์„ ์ฒ˜๋ฆฌํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ณผ์ œ์—์„œ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ, DexMimicGen์ด ์ƒ์„ฑํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…์€ ๊ธฐ์กด ์†Œ๊ทœ๋ชจ ๋ฐ๋ชจ๋งŒ์œผ๋กœ ํ•™์Šตํ•œ ์ •์ฑ…๋ณด๋‹ค ํ›จ์”ฌ ๋†’์€ ์„ฑ๊ณต๋ฅ ์„ ๋ณด์˜€์œผ๋ฉฐ, ์‹ค์ œ ๋กœ๋ด‡์—์„œ๋„ ์„ฑ๊ณต์ ์ธ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ๋‹ฌ์„ฑํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋กœ๋ด‡๊ณตํ•™์—์„œ ๋ชจ๋ฐฉ ํ•™์Šต์˜ ๋ฒ”์œ„๋ฅผ ํ™•์žฅํ•  ๋ฟ ์•„๋‹ˆ๋ผ, ๋ฐ์ดํ„ฐ ๋ถ€์กฑ์ด๋ผ๋Š” ์‹ค์šฉ์  ๋ฌธ์ œ๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ํ‘ธ๋Š” ์ƒˆ๋กœ์šด ๊ธธ์„ ์ œ์‹œํ•œ๋‹ค. ์•ž์œผ๋กœ DexMimicGen์˜ ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ์…‹๊ณผ ํˆด์„ ๋ฐ”ํƒ•์œผ๋กœ ๋” ๋‹ค์–‘ํ•œ ์–‘ํŒ” ์กฐ์ž‘ ๊ณผ์ œ์™€ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์—ฐ๊ตฌํ•ด ๋‚˜๊ฐ€๋ฉด, ๋กœ๋ด‡์˜ ๋ณต์žกํ•œ ํ˜‘์—… ์กฐ์ž‘ ๋Šฅ๋ ฅ ํ–ฅ์ƒ์— ํฐ ์ง„์ „์ด ์žˆ์„ ๊ฒƒ์ด๋‹ค.

Copyright 2026, JungYeon Lee