Curieux.JY
  • Post
  • Note
  • Jung Yeon Lee

On this page

  • 1 Newton์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?
  • 2 Newton ๋ฒ ํƒ€(ฮฒ) ๋ฆด๋ฆฌ์Šค์˜ ํ•˜์ด๋ผ์ดํŠธ
  • 3 Isaac Lab์—์„œ Newton์„ ์‚ฌ์šฉํ•ด ์ฟผ๋“œ๋ŸฌํŽ˜๋“œ ๋ณดํ–‰ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•(๊ฐœ์š”)
    • 3.1 Step 1 โ€” Newton์œผ๋กœ ๋ณดํ–‰ ์ •์ฑ… ํ•™์Šตํ•˜๊ธฐ
    • 3.2 Step 2 โ€” Validation with Sim2Sim(PhysX โ†”๏ธŽ Newton) transfer
    • 3.3 Step 3 โ€” Prepare for Sim2Real
  • 4 Newton standalone ์—”์ง„์„ ์ด์šฉํ•œ Multiphysics
    • 4.1 Step 1: Franka ์•”(๋กœ๋ด‡ ํŒ”) + Cloth(์ฒœ) Interactive ๋ฐ๋ชจ ์‹คํ–‰
    • 4.2 Step 2: ๋ฉ€ํ‹ฐํ”ผ์ง์Šค ๊ฒฐํ•ฉ(multiphysics coupling) ์ดํ•ดํ•˜๊ธฐ
  • 5 Newton์„ ์ƒํƒœ๊ณ„(์—์ฝ”์‹œ์Šคํ…œ)์ด ์–ด๋–ป๊ฒŒ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‚˜?

๐ŸงฉNewton ๋ฌผ๋ฆฌ์—”์ง„

newton
isaacsim
2025
Train a Quadruped Locomotion Policy and Simulate Cloth Manipulation with NVIDIA Isaac Lab and Newton
Published

October 1, 2025

This post is a translated article of the original โ€œTrain a Quadruped Locomotion Policy and Simulate Cloth Manipulation with NVIDIA Isaac Lab and Newtonโ€ News.


NVIDIA Isaac Lab ๋ฐ Newton์œผ๋กœ Quadruped ๋ณดํ–‰ ์ •์ฑ…์„ ํ•™์Šตํ•˜๊ณ  ์ฒœ(์˜ท๊ฐ) ์กฐ์ž‘์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ธฐ

๋ฌผ๋ฆฌ(Physics)๋Š” ๋กœ๋ด‡ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ๋กœ๋ด‡ ๋™์ž‘๊ณผ ํ˜„์‹ค์ ์ธ ํ™˜๊ฒฝ ๋‚ด ์ƒํ˜ธ์ž‘์šฉ์„ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ€์ƒ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌ์ž์™€ ์—”์ง€๋‹ˆ์–ด๋Š” ๋กœ๋ด‡ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•™์Šตยท๊ฐœ๋ฐœยทํ…Œ์ŠคํŠธยท๊ฒ€์ฆํ•˜๊ณ , ํ”„๋กœํ† ํƒ€์ž…์„ ์•ˆ์ „ํ•˜๊ณ  ๊ฐ€์†ํ™”๋œ ๋ฐฉ์‹์œผ๋กœ ์‹คํ—˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์ข…์ข… ํ˜„์‹ค๊ณผ ์™„์ „ํžˆ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š”๋ฐ, ์ด๋ฅผ sim-to-real gap(์‹œ๋ฎฌ๋ ˆ์ด์…˜โ†’ํ˜„์‹ค ์ฐจ์ด)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋กœ๋ณดํ‹ฑ์Šค ๊ฐœ๋ฐœ์ž๋“ค์€ ๋‹ค์–‘ํ•œ ์†”๋ฒ„๋ฅผ ์ง€์›ํ•˜๋Š” ํ†ตํ•ฉ ๊ฐ€๋Šฅํ•˜๊ณ , ํ™•์žฅ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ปค์Šคํ„ฐ๋งˆ์ด์ฆˆ ๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ ๋ชจ๋ธ๋ง ์†”๋ฃจ์…˜์„ ํ•„์š”๋กœ ํ•ฉ๋‹ˆ๋‹ค.

์ด ๊ธ€์—์„œ๋Š” NVIDIA Isaac Lab ๋‚ด์—์„œ Newton์„ ์‚ฌ์šฉํ•ด 4์กฑ๋ณดํ–‰ ๋กœ๋ด‡์„ ํ•œ ์ง€์ ์—์„œ ๋‹ค๋ฅธ ์ง€์ ์œผ๋กœ ์ด๋™์‹œํ‚ค๋Š” Locomotion ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์‚ฐ์—…์šฉ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ(Franka)๋กœ ์ฒœ(Cloth)์„ ์ ‘๋Š” ๋“ฑ ๋‹ค์ค‘ ๋ฌผ๋ฆฌ(multi-physics) ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์„ค์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•ˆ๋‚ดํ•ฉ๋‹ˆ๋‹ค.

1 Newton์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

Newton์€ NVIDIA, Google DeepMind, Disney Research๊ฐ€ ๊ณต๋™ ๊ฐœ๋ฐœํ•˜๊ณ  Linux Foundation์—์„œ ๊ด€๋ฆฌํ•˜๋Š” ์˜คํ”ˆ ์†Œ์Šค, ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ ์—”์ง„์œผ๋กœ ๋กœ๋ด‡ ํ•™์Šต ๋ฐ ๊ฐœ๋ฐœ์„ ์ง„์ „์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. Newton์€ NVIDIA Warp ๋ฐ OpenUSD ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์ถ•๋˜์—ˆ์œผ๋ฉฐ, MuJoCo Playground๋‚˜ Isaac Lab ๊ฐ™์€ ๋กœ๋ด‡ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์™€ ํ˜ธํ™˜๋ฉ๋‹ˆ๋‹ค.

๋‰ดํ„ด์˜ ํ•ต์‹ฌ์—๋Š” ์ˆ˜์น˜ ์ ๋ถ„๊ณผ ์ œ์•ฝ ์กฐ๊ฑด ํ•ด๊ฒฐ์„ ์œ„ํ•œ ์†”๋ฒ„ ๋ชจ๋“ˆ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์†”๋ฒ„๋Š” ์ œ์•ฝ ์กฐ๊ฑด ๊ธฐ๋ฐ˜ ๋˜๋Š” ํž˜ ๊ธฐ๋ฐ˜(constraint- or force-based)์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ง์ ‘ ๋˜๋Š” ๋ฐ˜๋ณต ๋ฐฉ๋ฒ•(direct or iterative methods)์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ตœ๋Œ€ ๋˜๋Š” ์ถ•์†Œ๋œ ์ขŒํ‘œ ํ‘œํ˜„(maximal or reduced coordinate representations)์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ณตํ†ต ์ธํ„ฐํŽ˜์ด์Šค์™€ ๊ณต์œ  ๋ฐ์ดํ„ฐ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ฉด MuJoCo Warp, ๋””์ฆˆ๋‹ˆ ๋ฆฌ์„œ์น˜ Kamino ์†”๋ฒ„, ์ปค์Šคํ…€ ์†”๋ฒ„๋ฅผ ์‹คํ–‰ํ•˜๋“  ๋‰ดํ„ด๊ณผ ์ผ๊ด€๋˜๊ฒŒ ์ƒํ˜ธ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ์ด ๋ชจ๋“ˆ์‹ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ฝ”๋“œ๋ฅผ ๋‹ค์‹œ ์ž‘์„ฑํ•˜์ง€ ์•Š๊ณ ๋„ ์ถฉ๋Œ ์ฒ˜๋ฆฌ, ์—ญ์šด๋™ํ•™, ์ƒํƒœ ๊ด€๋ฆฌ, ํƒ€์ž„์Šคํ… ๋…ผ๋ฆฌ๋ฅผ ์žฌ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ›ˆ๋ จ์„ ์œ„ํ•ด ๋‰ดํ„ด์€ ๋ฌผ๋ฆฌ ์ƒํƒœ๋ฅผ PyTorch ๋ฐ NumPy ํ˜ธํ™˜ ๋ฐฐ์—ด๋กœ ๋…ธ์ถœํ•˜๋Š” ํ…์„œ ๊ธฐ๋ฐ˜ API๋ฅผ ์ œ๊ณตํ•˜์—ฌ Isaac Lab๊ณผ ๊ฐ™์€ ๋กœ๋ด‡ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์™€ ํšจ์œจ์ ์ธ ๋ฐฐ์น˜ ๋ฐ ์›ํ™œํ•œ ํ†ตํ•ฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. Newton Selection API๋ฅผ ํ†ตํ•ด ํ›ˆ๋ จ ์Šคํฌ๋ฆฝํŠธ๋Š” ๋‹จ์ผ ์ผ๊ด€๋œ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ๊ณต๋™ ์ƒํƒœ๋ฅผ ์ฟผ๋ฆฌํ•˜๊ณ , ๋™์ž‘์„ ์ ์šฉํ•˜๋ฉฐ, ๊ฒฐ๊ณผ๋ฅผ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋‹ค์‹œ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ตฌ๊ธ€ ๋”ฅ๋งˆ์ธ๋“œ์—์„œ ๊ฐœ๋ฐœํ•œ MuJoCo Warp๋Š” ๋‰ดํ„ด ์†”๋ฒ„๋กœ ์™„์ „ํžˆ ํ†ตํ•ฉ๋˜์–ด ์žˆ์œผ๋ฉฐ, ๋”ฅ๋งˆ์ธ๋“œ ์Šคํƒ์—์„œ MJX์™€ Playground์—๋„ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ถ€์—ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ๊ณผ ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ตœ์†Œํ•œ์˜ ๋งˆ์ฐฐ๋กœ Newton, IsaacLab, ๊ทธ๋ฆฌ๊ณ  MuJoCo ํ™˜๊ฒฝ ์ „๋ฐ˜์—์„œ ์›ํ™œํ•˜๊ฒŒ ์ด๋™ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.(Apache 2.0 ๋ผ์ด์„ ์Šค ํ•˜์— ์ถœ์‹œ๋˜์–ด ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ ์ฑ„ํƒ, ํ™•์žฅ ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๋ณด์žฅ)

2 Newton ๋ฒ ํƒ€(ฮฒ) ๋ฆด๋ฆฌ์Šค์˜ ํ•˜์ด๋ผ์ดํŠธ

  • MuJoCo Warp(์ฃผ์š” Newton ์†”๋ฒ„)๋Š” GeForce RTX 4090์—์„œ ๋ณดํ–‰(locomotion)์— ๋Œ€ํ•ด ์ตœ๋Œ€ 152๋ฐฐ, ์กฐ์ž‘(manipulation)์— ๋Œ€ํ•ด ์ตœ๋Œ€ 313๋ฐฐ ๋น ๋ฅธ ์„ฑ๋Šฅ (NVIDIA RTX PRO 6000 Blackwell Series๋Š” MuJoCo Warp์— ๋Œ€ํ•ด ์ตœ๋Œ€ 44% ์ถ”๊ฐ€ ์†๋„, MJX์— ๋Œ€ํ•ด 75% ์ถ”๊ฐ€ ์†๋„ ์ œ๊ณต)
  • Newton ๋ฒ ํƒ€๋Š” ์ฐจ์„ธ๋Œ€ Isaac Lab ๋ฐฑ์—”๋“œ๋กœ ์‚ฌ์šฉ๋  ๋•Œ, MuJoCo Warp ๋Œ€๋น„ PhysX๋ณด๋‹ค in-hand dexterous manipulation์—์„œ ์ตœ๋Œ€ 65% ๋น ๋ฅธ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑ
  • ์–‡์€ ๋ณ€ํ˜•์ฒด(์˜ˆ: ์˜๋ณต)์šฉ Vortex Block Descent(VBD) ์†”๋ฒ„์™€, ์ž…์ž ๊ธฐ๋ฐ˜ ์žฌ๋ฃŒ(์˜ˆ: ํ™ยท์ž๊ฐˆ)์šฉ Implicit Material Point Method(MPM) ์†”๋ฒ„์˜ ์„ฑ๋Šฅ ๋ฐ ์•ˆ์ •์„ฑ ํ™•์žฅ์ด ํฌํ•จ

3 Isaac Lab์—์„œ Newton์„ ์‚ฌ์šฉํ•ด ์ฟผ๋“œ๋ŸฌํŽ˜๋“œ ๋ณดํ–‰ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•(๊ฐœ์š”)

Isaac Lab์— ํ†ตํ•ฉ๋œ Newton ๋ฌผ๋ฆฌ ์—”์ง„์€ ๋กœ๋ด‡ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๋” ๋น ๋ฅด๊ณ  ๊ฐ•๊ฑดํ•œ ์›Œํฌํ”Œ๋กœ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” 4์กฑ๋ณดํ–‰๋กœ๋ด‡(ANYmal-D ๋กœ๋ด‡ ์‚ฌ์šฉ ์˜ˆ)์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์—”๋“œ ํˆฌ ์—”๋“œ(train โ†’ validate โ†’ deploy) ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค.

3.1 Step 1 โ€” Newton์œผ๋กœ ๋ณดํ–‰ ์ •์ฑ… ํ•™์Šตํ•˜๊ธฐ

  1. ๋ ˆํฌ์ง€ํ† ๋ฆฌ ์„ค์ •: Isaac Lab ์ €์žฅ์†Œ๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค(๋ ˆํฌ์ง€ํ† ๋ฆฌ ์…‹์—… ๋งํฌ ์ฐธ์กฐ).
  2. ํ•™์Šต ์Šคํฌ๋ฆฝํŠธ ์‹คํ–‰: Isaac Lab์˜ RL ์Šคํฌ๋ฆฝํŠธ(์˜ˆ: rsl_rl)๋ฅผ ์‚ฌ์šฉํ•ด ANYmal-D๋ฅผ ํ‰์ง€์—์„œ ๊ฑท๋„๋ก ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. GPU ๋ณ‘๋ ฌํ™”๋ฅผ ํ†ตํ•ด ์ˆ˜์ฒœ ๊ฐœ์˜ ๋ณ‘๋ ฌ ํ™˜๊ฒฝ์—์„œ ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ด์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  3. headless ๋ชจ๋“œ์—์„œ ํ•™์Šต(์ตœ๋Œ€ ์„ฑ๋Šฅ ๊ถŒ์žฅ) :
./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py \
  --task Isaac-Velocity-Flat-Anymal-D-v0 --num_envs 4096 --headless
  1. Newton Visualizer(๊ฒฝ๋Ÿ‰ ๋ชจ๋‹ˆํ„ฐ๋ง ๋„๊ตฌ): ๋‰ดํ„ด ๋ฒ ํƒ€ ๋ฒ„์ „์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๊ฒฝ๋Ÿ‰ ๋‰ดํ„ด ๋น„์ฃผ์–ผ๋ผ์ด์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ฒด ์˜ด๋‹ˆ๋ฒ„์Šค GUI์˜ ์„ฑ๋Šฅ ์˜ค๋ฒ„ํ—ค๋“œ ์—†์ด ํ›ˆ๋ จ ์ง„ํ–‰ ์ƒํ™ฉ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. --newton_visualizer ํ”Œ๋ž˜๊ทธ๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค:
./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py \
  --task Isaac-Velocity-Flat-Anymal-D-v0 --num_envs 4096 --headless \
  --newton_visualizer

ํ•™์Šต์ด ์™„๋ฃŒ๋˜๋ฉด .pt ํ˜•์‹์˜ ์ •์ฑ… ์ฒดํฌํฌ์ธํŠธ๊ฐ€ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค.

time-lapse-rl-training-newton

Time-lapse of RL training visualized using the Newton Visualizer

3.2 Step 2 โ€” Validation with Sim2Sim(PhysX โ†”๏ธŽ Newton) transfer

  • Sim2Sim ์ „์ด๋Š” ์ •์ฑ…์ด ํŠน์ • ๋ฌผ๋ฆฌ ์—”์ง„ ํŠน์„ฑ์— ๊ณผ์ ํ•ฉ(overfit)๋˜์ง€ ์•Š์•˜๋Š”์ง€ ํ™•์ธํ•˜๋Š” ํ•„์ˆ˜ ๊ฒ€์ฆ์ž…๋‹ˆ๋‹ค. ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ(์˜ˆ: PhysX โ†”๏ธŽ Newton) ๊ฐ„ ์ „์ด๊ฐ€ ์„ฑ๊ณตํ•˜๋ฉด ์‹ค์ œ ๋กœ๋ด‡์—์„œ๋„ ๋™์ž‘ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์ง‘๋‹ˆ๋‹ค.
  • ์„œ๋กœ ๋‹ค๋ฅธ ๋ฌผ๋ฆฌ ์—”์ง„์€ USD๋ฅผ ํŒŒ์‹ฑํ•˜๋Š” ๋ฐฉ์‹์ด๋‚˜ ๊ด€์ ˆ ์ˆœ์„œ๊ฐ€ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๊ด€์ฐฐ(observation)๊ณผ ํ–‰๋™(action)์„ ์žฌ๋งคํ•‘ํ•˜๋Š” ๊ฐ„๋‹จํ•œ YAML ๋งคํ•‘ ํŒŒ์ผ๋กœ ์ด๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
  • Newton์—์„œ ํ•™์Šตํ•œ ์ •์ฑ…์„ PhysX ๊ธฐ๋ฐ˜ Isaac Lab์—์„œ ์‹คํ–‰ํ•˜๋ ค๋ฉด ์ œ๊ณต๋˜๋Š” ์ „์ด ์Šคํฌ๋ฆฝํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”:
./isaaclab.sh -p scripts/newton_sim2sim/rsl_rl_transfer.py \
  --task=Isaac-Velocity-Flat-Anymal-D-v0 \
  --num_envs=32 \
  --checkpoint <PATH_TO_POLICY_CHECKPOINT> \
  --policy_transfer_file scripts/sim2sim_transfer/config/newton_to_physx_anymal_d.yaml

ํ•ด๋‹น transfer ์Šคํฌ๋ฆฝํŠธ๋Š” Isaac Sim / IsaacLab GitHub ๋ ˆํฌ์ง€ํ† ๋ฆฌ์—์„œ ํ™•์ธ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

An ANYmal-D policy trained with the Newton backend is successfully deployed in PhysX-based Isaac Lab, showing Sim2Sim transfer in action

3.3 Step 3 โ€” Prepare for Sim2Real

  • ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ํ•™์Šตํ•œ ์ •์ฑ…์„ ์‹ค์ œ ๋กœ๋ด‡์œผ๋กœ ์ด์ „ํ•˜๋Š” ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ์ด ์˜ˆ์‹œ์—์„œ๋Š” ์ •์ฑ… ํ•™์Šต ์‹œ IMU, ๊ด€์ ˆ ์ธ์ฝ”๋”์™€ ๊ฐ™์€ ์‹ค์ œ ๋กœ๋ด‡์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ด€์ฐฐ๊ฐ’๋งŒ ์‚ฌ์šฉํ•˜๋„๋ก ์ œํ•œํ•˜์—ฌ ํŠน๊ถŒ ์ •๋ณด(privileged info)๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜์Œ์„ ๋ช…์‹œํ•ฉ๋‹ˆ๋‹ค.
  • ETH Zurich Robotic Systems Lab(RSL)์˜ ํ˜‘๋ ฅ์œผ๋กœ ํ•ด๋‹น ์ •์ฑ…์€ ๋ฌผ๋ฆฌ์  ANYmal ๋กœ๋ด‡์— ์ง์ ‘ ๋ฐฐํฌ๋˜์–ด ๊ฑท๋Š” ๋™์ž‘์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค(ํ•˜๋“œ์›จ์–ด ํ…Œ์ŠคํŠธ ๋น„๋””์˜ค ์ฐธ์กฐ). ์ด๋Š” Isaac Lab์—์„œ์˜ ํ•™์Šต์ด ์‹ค์„ธ๊ณ„ ํ…Œ์ŠคํŠธ๋กœ ์ด์–ด์ง€๋Š” ์ง์ ‘์ ์ธ ๊ฒฝ๋กœ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

A physical ANYmal robot executing a walking gait commanded by a policy trained entirely in the experimental version of Isaac Lab with the Newton backend and transferred directly to hardware

์—ฌ๊ธฐ๊นŒ์ง€ ํ›ˆ๋ จ, ๊ฒ€์ฆ ๋ฐ ๋ฐฐํฌ ํ”„๋กœ์„ธ์Šค๋Š” ๋‰ดํ„ด์ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ์‹ค์ œ ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.


4 Newton standalone ์—”์ง„์„ ์ด์šฉํ•œ Multiphysics

Multiphysics ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ ๋‚ด์—์„œ ๊ฐ•์ฒด(์˜ˆ: ๋กœ๋ด‡ ์†)์™€ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ ๋ฌผ์ฒด(์˜ˆ: ์ฒœ) ๊ฐ„์˜ ๊ฒฐํ•ฉ๋œ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌ์ฐฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋กœ๋ด‡ ์„ค๊ณ„, ์ œ์–ด ๋ฐ ์ž‘์—… ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ๋ณด๋‹ค ํ˜„์‹ค์ ์ธ ํ‰๊ฐ€์™€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. Newton์€ Isaac Lab๊ณผ ํ•จ๊ป˜ ๋™์ž‘ํ•  ๋ฟ ์•„๋‹ˆ๋ผ, ๋…๋ฆฝ Python ๋ชจ๋“œ๋กœ๋„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณต์žกํ•œ ๋ฌผ๋ฆฌ ์‹œ์Šคํ…œ์„ ์‹คํ—˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์•„๋ž˜ ์›Œํฌํ”Œ๋กœ์šฐ์—์„œ๋Š” ๋‰ดํ„ด์˜ ์ฃผ์š” ํŠน์ง•์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค: ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ๊ฐ€์ง„ ํ˜ผํ•ฉ ์‹œ์Šคํ…œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜. ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ ์ฒœ์„ ์กฐ์ž‘ํ•˜๋Š” ๊ฐ•์ฒด ๋กœ๋ด‡ ํŒ”์˜ ์˜ˆ๋ฅผ ์‚ดํŽด๋ณด๊ณ , ๋‰ดํ„ด API๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ ๋ฌผ๋ฆฌํ•™ ์†”๋ฒ„๋ฅผ ํ•˜๋‚˜์˜ ์‹ค์‹œ๊ฐ„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ์‰ฝ๊ฒŒ ๊ฒฐํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

4.1 Step 1: Franka ์•”(๋กœ๋ด‡ ํŒ”) + Cloth(์ฒœ) Interactive ๋ฐ๋ชจ ์‹คํ–‰

  1. Newton ์ €์žฅ์†Œ ๋ฃจํŠธ์—์„œ ์‹คํ–‰ํ•˜๊ธฐ ์‰ฌ์šด ์˜ˆ์ œ ๋ชจ์Œ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. Franka ๋กœ๋ด‡ ํŒ”๊ณผ Cloth ๋ฐ๋ชจ๋Š” ๋‰ดํ„ด ์ €์žฅ์†Œ์˜ ๋ฃจํŠธ์—์„œ ํ•œ ๋ฒˆ์˜ ๋ช…๋ น์œผ๋กœ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ํ™˜๊ฒฝ ์„ค์ •:
# Newton ์˜ˆ์ œ ์‹คํ–‰์„ ์œ„ํ•œ uv ํ™˜๊ฒฝ ์„ค์ •
uv sync --extra examples
  1. Franka Arm๊ณผ Cloth ๋ฐ๋ชจ ์‹คํ–‰:
# Franka arm + cloth ๋ฐ๋ชจ ์‹คํ–‰
uv run -m newton.examples cloth_franka

๋ฐ๋ชจ๋Š” ์‹ค์‹œ๊ฐ„ GPU ๊ฐ€์† ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ณด์—ฌ์ฃผ๋Š” ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋ทฐ์–ด๋ฅผ ์—ด๋ฉฐ, Franka-cloth ๋ฐ๋ชจ๋Š” GPU ๊ธฐ๋ฐ˜ VBD Cloth ์†”๋ฒ„๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. RTX 4090์—์„œ ์•ฝ 30 FPS๋กœ ์‹คํ–‰๋˜๋ฉฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‚ด ์นจํˆฌ(penetration) ์—†๋Š” ์ ‘์ด‰์„ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋ฅธ GPU ๊ธฐ๋ฐ˜ ์นจํˆฌ-์ œ๊ฑฐ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ(์˜ˆ: GPU-IPC)์™€ ๋น„๊ตํ•ด 300๋ฐฐ ์ด์ƒ์˜ ์„ฑ๋Šฅ ์šฐ์œ„๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๋“ฑ, ํ˜„์žฌ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์™„์ „ ์นจํˆฌ-ํ”„๋ฆฌ(fully penetration-free) ์ฒœ ์กฐ์ž‘ ๋ฐ๋ชจ ์ค‘ ๋งค์šฐ ๋น ๋ฅธ ํŽธ์ž…๋‹ˆ๋‹ค.

The Newton standalone engine runs the cloth manipulation demo, combining rigid body and deformable physics. This visualization is rendered in NVIDIA Omniverse Kit

4.2 Step 2: ๋ฉ€ํ‹ฐํ”ผ์ง์Šค ๊ฒฐํ•ฉ(multiphysics coupling) ์ดํ•ดํ•˜๊ธฐ

  • ์ด ๋ฐ๋ชจ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋™์—ญํ•™์  ๊ฑฐ๋™์„ ๊ฐ€์ง„ ์‹œ์Šคํ…œ์„ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฉ€ํ‹ฐํ”ผ์ง์Šค ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๊ฐ ๊ตฌ์„ฑ์š”์†Œ์— ํŠน์ˆ˜ ์†”๋ฒ„๋ฅผ ํ• ๋‹นํ•จ์œผ๋กœ์จ ๊ตฌํ˜„๋ฉ๋‹ˆ๋‹ค. ์˜ˆ์ œ ์Šคํฌ๋ฆฝํŠธ(example_cloth_franka.py)์—์„œ ์†”๋ฒ„ ์ดˆ๊ธฐํ™” ์ฝ”๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:
# ๋กœ๋ด‡์šฉ Featherstone ์†”๋ฒ„ ์ดˆ๊ธฐํ™”
self.robot_solver = SolverFeatherstone(self.model, ...)

# ์ฒœ์šฉ Vertex-Block Descent (VBD) ์†”๋ฒ„ ์ดˆ๊ธฐํ™”
self.cloth_solver = SolverVBD(self.model, ...)
  • ๋กœ๋ด‡ ์†”๋ฒ„๋ฅผ SolverFeatherstone ๋Œ€์‹  SolverMuJoCo์ฒ˜๋Ÿผ ๊ฐ•์ฒด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง€์›ํ•˜๋Š” ๋‹ค๋ฅธ ์†”๋ฒ„๋กœ ์‰ฝ๊ฒŒ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์˜ˆ์ œ๋Š” ๋‹จ๋ฐฉํ–ฅ(one-way) ๊ฒฐํ•ฉ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค(๊ฐ•์ฒด๊ฐ€ ๋ณ€ํ˜•์ฒด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋งŒ, ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ ์˜ํ–ฅ์€ ๋ฌด์‹œ). ์ฒœ ์กฐ์ž‘๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ, ์ฒœ์ด ๋กœ๋ด‡ ๋™์—ญํ•™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋ฌด์‹œ๋  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑดํ•˜์— ์ด๋Ÿฌํ•œ ๊ฒฐํ•ฉ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฃจํ”„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:
    • Update the cloth: cloth_solver๋Š” ๋กœ๋ด‡์˜ ์ถฉ๋Œ์— ๋ฐ˜์‘ํ•˜์—ฌ ์ฒœ์˜ ์›€์ง์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
    • Update the robot: robot_solver ํ”„๋ž‘์นด ํŒ”์˜ ์ƒํƒœ๋ฅผ ์ง„ํ–‰ํ•˜๋ฉฐ, ํŒ”์€ ์šด๋™ํ•™์ (kinematic) ๋ฌผ์ฒด์ฒ˜๋Ÿผ ์›€์ง์ž„
    • Detect collisions: ์—”์ง„์€ ์ƒˆ๋กœ ๋ฐฐ์น˜๋œ ๋กœ๋ด‡๊ณผ ์ฒœ ์ž…์ž ์‚ฌ์ด์˜ ์ถฉ๋Œ์„ ํ™•์ธ
def simulate(self):
    for _step in range(self.sim_substeps):
        # 1. ๋กœ๋ด‡ ์†”๋ฒ„๋ฅผ ํ•œ ์Šคํ… ์ง„ํ–‰
        self.robot_solver.step(self.state_0, self.state_1, ...)

        # 2. ๋กœ๋ด‡๊ณผ ์ฒœ ์ž…์ž ๊ฐ„ ์ถฉ๋Œ ์ฒดํฌ
        self.contacts = self.model.collide(self.state_0, ...)

        # 3. ๋กœ๋ด‡์˜ ์ถฉ๋Œ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜์—ฌ ์ฒœ ์†”๋ฒ„ ํ•œ ์Šคํ… ์ง„ํ–‰
        self.cloth_solver.step(self.state_0, self.state_1, ..., self.contacts, ...)
  • ์ด์ฒ˜๋Ÿผ ์‚ฌ์šฉ์ž๊ฐ€ ์ œ์–ดํ•˜๋Š” ๋ฃจํ”„๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋ฌผ๋ฆฌ ์‹œ์Šคํ…œ์ด ์–ด๋–ป๊ฒŒ ๊ฒฐํ•ฉ๋˜๋Š”์ง€๋ฅผ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค๋‹ˆ๋‹ค.
  • ํ–ฅํ›„ ์–‘๋ฐฉํ–ฅ(two-way) ๊ฒฐํ•ฉ(์˜ˆ: ํ™ยท์ง„ํ™๊ณผ ๊ฐ™์€ ๋ณ€ํ˜•์„ฑ ์ง€๋ฉด ์œ„์—์„œ์˜ ๋ณดํ–‰ ์‹œ ์ง€๋ฉด์ด ๊ฐ•์ฒด์— ์—ญ์œผ๋กœ ํž˜์„ ๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ) ๋ฐ ์‹œ์Šคํ…œ ๊ฐ„ ํž˜์˜ ๊ตํ™˜์„ ๋ณด๋‹ค ์ž๋™์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ถ€ ์†”๋ฒ„ ์กฐํ•ฉ์— ๋Œ€ํ•œ ์•”์‹œ์ (implicit) ๊ฒฐํ•ฉ๋„ ๊ตฌํ˜„ํ•  ๊ณ„ํš์ž…๋‹ˆ๋‹ค.

5 Newton์„ ์ƒํƒœ๊ณ„(์—์ฝ”์‹œ์Šคํ…œ)์ด ์–ด๋–ป๊ฒŒ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‚˜?

Newton ์˜คํ”ˆ ์ƒํƒœ๊ณ„๋Š” ๋น ๋ฅด๊ฒŒ ํ™•์žฅ ์ค‘์ด๋ฉฐ, ์—ฌ๋Ÿฌ ๋Œ€ํ•™ ๋ฐ ๊ธฐ์—…๋“ค์ด ํŠนํ™”๋œ ์†”๋ฒ„์™€ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ํ†ตํ•ฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด‰๊ฐ ์„ผ์‹ฑ(tactile sensing)์—์„œ ์ฒœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์„ฌ์„ธํ•œ ์กฐ์ž‘(dexterous manipulation)์—์„œ ๊ฑฐ์นœ ์ง€ํ˜•(locomotion over rough terrain)์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ํ˜‘์—…์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

์ฃผ์š” ์‚ฌ๋ก€:

  • ETH Zurich Robotic Systems Lab (RSL): ๋Œ€ํ˜• ์žฅ๋น„ ์ž๋™ํ™”(earthmoving) ๊ด€๋ จ ๋ฉ€ํ‹ฐํ”ผ์ง์Šค ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— Newton์„ ์ ๊ทน ํ™œ์šฉ. ์•”์‹œ์  Material Point Method (MPM) ์†”๋ฒ„๋ฅผ ์‚ฌ์šฉํ•ด ํ† ์–‘ยท์ž๊ฐˆยท๋Œ ๊ฐ™์€ ์ž…์ž ์ƒํ˜ธ์ž‘์šฉ์„ ์บก์ฒ˜. ๋˜ํ•œ Warp ๋” ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ ์šฉํ•˜์—ฌ, ๋ฐฐํฌ ๊ฐ€๋Šฅํ•œ locomotion ์ œ์–ด๋ฅผ ์œ„ํ•œ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ๊ฐ€์šฐ์‹œ์•ˆ ์Šคํ”Œ๋žซ(FOCI)์„ ์‚ฌ์šฉํ•œ ๊ถค์  ์ตœ์ ํ™”, GarmenCodeData ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•œ ๋Œ€๊ทœ๋ชจ 3D ์˜๋ฅ˜ ๋ชจ๋ธ๋ง๋“ฑ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

Newton is used to capture interaction of heavy machinery with a pile of granular material. Demo credit: Maximilian Krause, Lorenzo Terenzi and Lennart Werner from ETH Zurich

  • Lightwheel: SimReady ์—์…‹ ๊ฐœ๋ฐœ ๋ฐ ๋ณ€ํ˜•์ฒด(soil, cables ๋“ฑ) ์†”๋ฒ„ ์ตœ์ ํ™”์— ๊ธฐ์—ฌ. ANYmal ์ฟผ๋“œ๋ŸฌํŽ˜๋“œ๊ฐ€ ๋‹ค์ค‘ ์žฌ์งˆ๋กœ ๊ตฌ์„ฑ๋œ ๋น„๊ฐ•์ฒด(non-rigid) ์ง€ํ˜•(๋ชจ๋ž˜ยท์ž๊ฐˆ ๋“ฑ) ์œ„๋ฅผ ์ด๋™ํ•˜๋Š” ๋ฐ MPM ์†”๋ฒ„๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐ๋ชจ๋ฅผ ์ œ์ž‘.

The ANYmal quadruped interacts with non-rigid terrain composed of multiple materials such as sand and gravel

  • Peking University (PKU): IPC ๊ธฐ๋ฐ˜ ์†”๋ฒ„(Taccel)๋ฅผ Newton์— ํ†ตํ•ฉํ•ด ๋น„์ „ ๊ธฐ๋ฐ˜ ์ด‰๊ฐ ์„ผ์‹ฑ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™•์žฅ. Newton์˜ GPU ๊ฐ€์†ยท๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•ด ์„ฌ์„ธํ•œ ์ ‘์ด‰ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ชจ๋ธ๋ง.

Taccel simulation of Tac-Man manipulation closely aligns with real-world execution, with only a small sim-real gap

  • Style3D: ์˜๋ฅ˜ยท์—ฐ์„ฑ์ฒด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ์ˆ ์„ Newton์œผ๋กœ ํ†ตํ•ฉ, ์ˆ˜๋ฐฑ๋งŒ ์ •์  ์ˆ˜์ค€์˜ ๋Œ€๊ทœ๋ชจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ API ๋…ธ์ถœ ๊ณ„ํš.

High-fidelity modeling of garments and deformable objects with complex interactions using Newton

  • TUM (Technical University of Munich): AIDX Lab์—์„œ ์‹ค์ œ ๋กœ๋ด‡์—์„œ ๊ฒ€์ฆ๋œ ์ˆ™๋ จ๋œ ์กฐ์ž‘ ์ •์ฑ…์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ๋‹ค์‹œ ์žฌ์ƒ(์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ)ํ•˜๋Š” ์ž‘์—… ๋“ฑ์„ ์ง„ํ–‰ ์ค‘์ด๋ฉฐ, MuJoCo Warp์—์„œ 4,000 ๋ณ‘๋ ฌ ํ™˜๊ฒฝ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฒƒ๋„ ์ด๋ฏธ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด๊ณ . ํ–ฅํ›„ ํ•˜๋“œ์›จ์–ด๋กœ์˜ ์ „์†ก ๋ฐ ๊ณต๊ฐ„ ๋ถ„ํ•ด ์ด‰๊ฐ(Spatially resolved tactile skin)์„ ์ด์šฉํ•œ ๋ฏธ์„ธ ์กฐ์ž‘(fine manipulation)์œผ๋กœ ํ™•์žฅ ์˜ˆ์ •.
    • ์ฐธ๊ณ : learning tactile in-hand manipualtion agents, using Newton to advance robot learning research

Newton is used to run trained dexterous manipulation policies validated on real robotsโ€”back in simulation

Netwon Reference

  • https://github.com/newton-physics/newton
  • https://deepwiki.com/newton-physics/newton
  • https://newton-physics.github.io/newton/guide/overview.html

Newton was initiated by Disney Research, Google DeepMind, and NVIDIA.

  • Newton standalone Beta ์‹œ์ž‘: GitHub ๋ ˆํฌ์ง€ํ† ๋ฆฌ newton-physics/newton โ€” https://github.com/newton-physics/newton.
  • Isaac Lab์—์„œ Newton ์‚ฌ์šฉํ•ด๋ณด๊ธฐ: Isaac Lab GitHub โ€” https://github.com/isaac-sim/IsaacLab/tree/feature/newton.
  • Newton Developer(์ถ”๊ฐ€ ์ž๋ฃŒ): https://developer.nvidia.com/newton-physics

  • ๋ณธ ๊ธ€์— ์†Œ๊ฐœ๋œ ์—ฐ๊ตฌ๋Š” 2025๋…„ 9์›” 27์ผ~10์›” 2์ผ ์„œ์šธ์—์„œ ์—ด๋ฆฌ๋Š” CoRL ๋ฐ Humanoids์—์„œ ์ „์‹œ๋์Šต๋‹ˆ๋‹ค.
  • ๋˜ํ•œ 2025 BEHAVIOR Challenge(๊ฐ€์ •์šฉ ์ž‘์—… 50๊ฐœ ๋ฐ 10,000๊ฐœ ์›๊ฒฉ์กฐ์ž‘ ๋ฐ๋ชจ ํฌํ•จ)์— ์ฐธ์—ฌํ•ด ๋ณผ ๊ฒƒ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค.

Copyright 2024, Jung Yeon Lee